INTERNATIONAL STANDARD ISO 11519-3 > First edition 1994-06-15 **AMENDMENT 1** 1995-04-01 ### Road vehicles — Low-speed serial data communication — #### Part 3: Vehicle area network (VAN) iTeh STANDARD PREVIEW (AMENDMENTh1ai) ISO 11519-3:1994/Amd 1:1995 https://standards.itel/Yéhicules.routiers.ist/Communicationsen.série de données à fac76ands/s/ss/ss/9-3-1994-amd-1-1995 Partie 3: Réseau local de véhicule (VAN) AMENDEMENT 1 #### **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. (standards.iteh.ai) Amendment 1 to International Standard ISO 11519-3:1994 was prepared by Technical Committee ISO/TC 22, Road vehicles | Subcommittee | SO/SC | Electrical and electronic equipment | standards.iteh.ai/catalog/standards/sist/995622d3-94ef-4551-8alb-fae76afa6575/iso-11519-3-1994-amd-1-1995 ISO 11519 consists of the following parts, under the general title *Road vehicles* — *Low-speed serial data communication*: - Part 1: General and definitions - Part 2: Low-speed controller area network (CAN) - Part 3: Vehicle area network (VAN) © ISO 1995 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher. International Organization for Standardization Case postale 56 • CH-1211 Genève 20 • Switzerland Printed in Switzerland ### Road vehicles — Low-speed serial data communication — #### Part 3: Vehicle area network (VAN) **AMENDMENT 1** ### iTeh STANDARD PREVIEW (standards.iteh.ai) Page iv ISO 11519-3:1994/Amd 1:1995 Insert new page v and the following introduction: itel ai/catalog/standards/sist/995622d3-94ef-4551-8a1b-itel following introduction: itel itel following introduction: itel following #### Introduction Validation tests on vehicles have been conducted on the basis of ISO 11519-3:1994. The speed of data transmission has been increased up to 250 kTS/s with the same reliability providing that: - Filter description and system characteristics are more precisely given, and - parameter specifications of the transceiver are improved. Amendment 1 to ISO 11519-3 details the necessary changes to the 1994 Standard. #### Page 79 Add a new clause before clause 8, to read as follows. #### 7.6 Alternative up to 250 kTS/s This clause describes the network interface up to 250 kTS/s. The definition of TS (Time Slot) is according to clause 7.2.3 Bit encoding of ISO 11519-3 (VAN). 250 kTS/s is corresponding to 125 kbit/s in Manchester coding and 200 kbit/s in Enhanced Manchester coding. #### 7.6.1 System description #### 7.6.1.1 Functional block diagram This block diagram is given in figure 52. Figure 52 — 250 kTS/s VAN bus interface #### 7.6.1.2 Filter section The diagram is given in figure 53, together with the parameters. | Parameter | Recommended value | Tolerance | Comments | |-----------|--------------------------------|----------------------------------|---| | C1 | 100 pF | | ≥ 50 V | | C2 | 120 pF | ± 10 % | ≥ 25 V | | R1 | 100 Ω | | 1/4 W continuous | | iTeh S | 1800 Ω
TA ₂₇₀₀ Ω | D [±] 2 [*] RI | 1/16 W continuous,
0,3 W during 400 ms
1/4 W continuous
1,25 W during 400 ms | | | (standards | .iteh.a | 1) | Figure 53 — 250 kTS/s filter ISO 11519-3:1994/Amd 1:1995 https://standards.iteh.ai/catalog/standards/sist/995622d3-94ef-4551-8a1b-fae76afa6575/iso-11519-3-1994-amd-1-1995 #### 7.6.1.3 Cable characteristics | Parameter | Test condition and description | Value | | | | | |-----------------|---|-------|---------|------|-----------|--| | | | min. | typical | max. | Unit | | | . Cg-data | Overall capacitance between ground and Data | 0 | | 200 | pF/module | | | Cg-dataB | Overall capacitance between ground and DataB | 0 | | 200 | pF/module | | | Cdata-dataB | Overall capacitance between Data and DataB | 0 | | 100 | pF/module | | | Coverall | = Cg-data + CgdataB + 2 CgData-DataB; by node connected and 2,0 V offset ground in nominal mode or 0,7 V offset in degraded mode. | 0 | | 200 | pF/module | | | Lcable | Overall cable length | 0 | | 20 | m | | | RISOLg-data | Overall resistor isolation between ground and data | 50 | | | kΩ | | | RISOLg-dataB | Overall resistor isolation between Data and DataB | 50 | | | kΩ | | | RISOLdata-dataB | Overall resistor insulation between Data and DataB | 20 | | | kΩ | | | RCOND | Overall serial resistor of Data or DataB between nodes | 0 | | 4 | Ω | | #### 7.6.1.4 System characteristics #### 7.6.1.4.1 Number of nodes connected to the network | Parameter | Test condition and description | Value | | | | | |-----------|--------------------------------------|-------|---------|------|------|--| | | | min. | typical | max. | Unit | | | Mnode | Number of nodes connected to network | 2 | | 12 | node | | #### 7.6.1.4.2 Timing characteristics In accordance to VAN protocol at 250 kTS/s, with Enhanced Manchester coding. | Parameter | Test condition and description | Value | | | | | |-----------|--|-------|---------|-------|------|--| | | | min. | typical | max. | Unit | | | TS | Time Slot duration without resynchronization (DE input) | 3,96 | 4 | 4,04 | μs | | | TDelay | Propagation delay time between DE logical input for one node to RO, R1, and R2 logical outputs from any node | 0 | 0,6 | 1,25 | μs | | | Tsample ' | Sample point of protocol controller | 12/16 | 12/16 | 12/16 | TS | | #### 7.6.1.4.3 Transient stress capability (automotive application) The network interface is designed to withstand automobile type transients on Data and DataB lines as defined in ISO 7637 part 1. | Pulse characteristics | | | | | | | | | |-----------------------|-------------------------|------------------------|-------------------|--------|------------------|--|--|--| | ISO pulse type | Magnitude no load | Duration | Source impedance | Period | Number of pulses | | | | | 5 | V _s = 36,5 V | $T_d = 400 \text{ ms}$ | $R_i = 2 \Omega$ | 1 min | 5 | | | | | 1 | V _s = -50 V | $t_d = 2 ms$ | $R_i = 10 \Omega$ | 5 s | 50 | | | | In addition the interface is fully functional during start engine phase. #### 7.6.1.4.4 Continuous stress capability (automotive application) The network interface is designed to withstand = 24 V and +24 V voltages on Data and DataB lines. #### 7.6.1.4.5 Ground offset between nodes | Parameter | Test condition and description | Value | | | | |-----------|--|----------------|-----------|------|------| | | https://standards.iteh.ai/catalog/standards/sist/995622d3-94e | -4551 - | atlypical | max. | Unit | | Vnode-nom | Offset between the 2 nodesain nominals model 1519-3-1994-amd-1-1995 (for worst case parameters of cable and interface) | -2 | | +2 | V | | Vnode-deg | Offset between the 2 nodes in degraded mode (for worst case parameters of cable and interface) | -0,7 | 0 | +0,7 | V | (standards.iteh.ai) Nominal mode: The network uses Data and DataB line for communication. Degraded mode: In this case, one line is broken-down and the network uses Data or DataB line for communication. #### 7.6.2 Transceiver description #### 7.6.2.1 Driver section | Parameter | Test condition and description | Value | | | | | |-----------|--|-------|---------|-------|------|--| | | | min. | typical | max. | Unit | | | | DE = 1; Vdata = -5 V to +3,75 V; VdataB = +1,25 V to +10 V | +1,6 | +1,8 | +2,0 | mA | | | Irec | DE = 1; Vdata = +3,75 V to +5 V; VdataB = +0 V to +1,25 V | -0,10 | | +2,0 | mA | | | | DE = 1; Vdata = +5 V to +10 V; VdataB = -5 V to 0 V | -0,10 | | +0,10 | mA | | | | DE = 0; Vdata = +1,25 V to +10 V; VdataB = -5 V to +3,75 V | +45 | +50 | +60 | mA | | | Idom | DE = 0; Vdata = 0 V to +1,25 V; VdataB = +3,75 V to +5 V | -0,10 | | +60 | mA | | | | DE = 0; Vdata = -5 V to 0 V; VdataB = +5 V to +10 V | -0,10 | | +0,10 | mA | | | | DE = 1; Vdata = -5 V to +10 V; VdataB = -5 V to +10 V | -0,10 | | +0,10 | mA | | | OverShot | Current overshot during transition recessive> dominant | | | 10 | mA | | | M-I | Static matching of current output | -5 | | +5 | 8 | | | TON | Propagation delay of dominant current from recessive state to dominant state | | | 200 | ns | | | TOFF | Propagation delay of dominant current from dominant state to recessive state | | | 200 | ns | | #### 7.6.2.2 Receiver section | Parameter | Test condition and description | Value | | | | | | |-----------|--|-------|---------|------|------|--|--| | Parameter | rest condition and description | min. | typical | max. | Unit | | | | VMCR | Common mode | 0,5 | | 4,5 | V | | | | ZMC | Common mode impedance | 100 | | | kΩ | | | | ZMD | Differencial mode impedance | 100 | | | kΩ | | | | CMC | Input capacitance between input and ground | | | 10 | pF | | | | CMD | Differential input capacitance between inputs | | | 10 | pF | | | | OFFr | R1 and R2 comparators offset | -25 | 0 | +25 | mV | | | | HYSdif | Differential comparator input hysteresis | 150 | 200 | 250 | mV | | | | HYSSr | R1 and R2 comparator input hysteresis | 150 | 200 | 250 | mV | | | | TDEL | Propagation delay for high to low transition, input overdrive 50 mV | | | 150 | ns | | | | TEDH | Propagation delay for low to high transition, input overdrive 50 mV | | | 150 | ns | | | #### 7.6.2.3 Polarization section | | Test condition and description | | Value | | | | |-----------|---|----------------|------------|---------|-------|------| | Parameter | | | min. | typical | max. | Unit | | ZGT | Output impedance FOL used by filter 1 3 mA output FOL current Frequency = 1MHz Frequency = 1 kHz | | X / | | 200 | Ω | | | | | • | | 100 | Ω | | VGTint | Internal reference for R1 and R2 used b | comparators al | 2,375 | 2,5 | 2,625 | V | | VGText | Output voltage POL ± 2 mA used by filte: | r | 2,375 | 2,5 | 2,625 | v | ISO 11519-3:1994/Amd 1:1995 https://standards.iteh.ai/catalog/standards/sist/995622d3-94ef-4551-8a1b-fae76afa6575/iso-11519-3-1994-amd-1-1995 ## iTeh STANDARD PREVIEW (standards.iteh.ai) ISO 11519-3:1994/Amd 1:1995 https://standards.iteh.ai/catalog/standards/sist/995622d3-94ef-4551-8a1b-fae76afa6575/iso-11519-3-1994-amd-1-1995 #### ICS 43 040 10 **Descriptors:** road vehicles, electronic equipment, data communication equipment, data processing, information interchange, local area networks, vehicle area networks, data transmission, data link layer, physical layer. Price based on 5 pages