

SLOVENSKI STANDARD SIST ISO 8130-10:1998

01-avgust-1998

DfUý_Ugh]`dfYa Un]`!`%\$"'XY`.`8 c`c Ub^Y`i]b_cj]hcgh]`bUbUýUb^U

Coating powders -- Part 10: Determination of deposition efficiency

Poudres pour revêtement - Partie 10: Détermination du rendement d'application

Ta slovenski standard je istoveten z: ISO 8130-10:1998

SIST ISO 8130-10:1998 https://standards.iteh.ai/catalog/standards/sist/058b0cbf-da14-49a5-9404-		
<u>ICS:</u> 87.040	40a01 Barve in laki	090705b/sist-iso-8130-10-1998 Paints and varnishes

SIST ISO 8130-10:1998

en

iTeh STANDARD PREVIEW (standards.iteh.ai)

INTERNATIONAL STANDARD

ISO 8130-10

First edition 1998-05-01

Coating powders —

Part 10: Determination of deposition efficiency

Poudres pour revêtement —

iTeh STANDARD PREVIEW (standards.iteh.ai)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

iTeh STANDARD PREVIEW

International Standard ISO 8130-10 was prepared by Technical Committee ISO/TC 35, *Paints and varnishes*, Subcommittee SC 9, *General test methods for paints and varnishes*.

SIST ISO 8130-10:1998

ISO 8130 consists of the following parts, it indent the /general/stitle5*Coating* a14-49a5-9404powders: 40a0f090705b/sist-iso-8130-10-1998

- Part 1: Determination of particle size distribution by sieving
- Part 2: Determination of density by gas comparison pyknometer (referee method)
- Part 3: Determination of density by liquid displacement pyknometer
- Part 4: Calculation of lower explosion limit
- Part 5: Determination of flow properties of a powder/air mixture
- Part 6: Determination of gel time of thermosetting coating powders at a given temperature
- Part 7: Determination of loss of mass on stoving

© ISO 1998

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case postale 56 • CH-1211 Genève 20 • Switzerland Internet central@iso.ch

X.400 c=ch; a=400net; p=iso; o=isocs; s=central

Printed in Switzerland

- Part 8: Assessment of the storage stability of thermosetting powders
- Part 9: Sampling
- Part 10: Determination of deposition efficiency
- Part 11: Inclined-plane flow test
- Part 12: Determination of compatibility

iTeh STANDARD PREVIEW (standards.iteh.ai)

iTeh STANDARD PREVIEW (standards.iteh.ai)

Coating powders –

Part 10:

Determination of deposition efficiency

1 Scope

This part of ISO 8130 is one of a series of standards dealing with the sampling and testing of paints, varnishes and related products.

It specifies a method for determining the percentage by mass of a sprayed coating powder which is actually deposited on a standard test target when powder is sprayed at the target from a spray gun under standard conditions.

(standards.iteh.ai)

The method is applicable to powders applied by corona charging or tribo charging.

SIST ISO 8130-10:1998

The method may be used to compare the deposition efficiency of different powders with the same gun or of different guns with the same powder. 40a0f090705b/sist-iso-8130-10-1998

This method should only be used for comparison when powders or guns are evaluated consecutively, as the influence of the environment and the equipment can vary significantly with time and location.

The results are dependent on the following properties of the powder:

- a) chemical composition;
- b) density;
- c) particle size distribution;
- d) particle shape;
- e) flow properties of its mixture in air;
- f) moisture content;

and also on the test conditions, including:

g) spray pattern produced by the gun;

- h) gun air pressure;
- i) gun voltage;
- i) gun polarity;
- k) air humidity.

2 Normative reference

The following standard contains provisions which, through reference in this text, constitute provisions of this part of ISO 8130. At the time of publication, the edition indicated was valid. All standards are subject to revision, and parties to agreements based on this part of ISO 8130 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members IEC and ISO maintain registers of currently valid International Standards.

ISO 8130-9:1992, Coating powders – Part 9: Sampling.

iTeh STANDARD PREVIEW **Definitions**

For the purposes of this part of ISO 8130, the following definition applies:

deposition efficiency: /The proportion of the mass of powder deposited compared to the mass of 3.1 powder sprayed, expressed as a percentage 06090705b/sist-iso-8130-10-1998

4 **Principle**

3

The method consists of spraying charged powder, at a known flow rate and under known conditions of atmospheric temperature and humidity, at the central one of five similar steel targets each wrapped in aluminium foil. The mass of powder deposited on the central target is determined, from which the deposition efficiency is calculated.

The operation is performed in an air extraction booth.

5 **Apparatus**

5.1 Set of targets, consisting of five steel tubes of external diameter 25 mm and length 500 mm. The tubes have a hole drilled at one end to enable the targets to be hung vertically. Each target shall be properly earthed.

5.2 Clean aluminium foil, of commercial quality. **5.3** Suspension device, from which the five target tubes can be hung vertically in line at equal distances of 95 mm to 105 mm as measured from the centres.

- 5.4 Vacuum-cleaner bag.
- **5.5 Oven,** capable of melting the powder.
- **5.6 Balance,** accurate to 0,1 g.
- **5.7** Timing device, accurate to 0,1 s.

5.8 Powder spray system, consisting of either a corona charge or a tribo charge spray gun suitably mounted in an air extraction booth together with a suitable powder collection device.

5.9 Non-conductive shield or powder collection device, sufficiently large to prevent powder emitted from the spray gun from impinging on the targets before and after the test, and sufficiently mobile to be moved away for the period of test.

6 Sampling

Take a representative sample of the product to be tested, as described in ISO 8130-9. A sample of 2 kg is recommended. (standards.iteh.ai)

<u>SIST ISO 8130-10:1998</u> https://standards.iteh.ai/catalog/standards/sist/058b0cbf-da14-49a5-9404-40a0f090705b/sist-iso-8130-10-1998

7 Procedure

7.1 Carry out the test in duplicate at a temperature of (23 ± 2) °C and a relative humidity between 20 % and 70 %.

In view of the large volume of air which can pass through the air extraction booth during the test, it may not be possible to control the temperature and humidity to close limits. Under these circumstances, the range of temperature and humidity shall be stated in the test report.

7.2 Wrap the five targets (5.1) with aluminium foil (5.2) such that the top and bottom edges fold over into the tube to ensure good electrical contact. Weigh, on the balance (5.6) to the nearest 0,1 g, the foil to be used for the central tube.

7.3 Determine the powder flow rate by spraying powder through the powder spray system (5.8) for 60 s as measured by the timing device (5.7) into a pre-weighed vacuum-cleaner bag (5.4). Re-weigh the bag and its contents to 0,1 g and calculate the powder flow rate in grams per minute.

a) When using a corona charge gun, adjust the control of the powder spray device to achieve a powder flow rate of $(150 \pm 7,5)$ g/min.

NOTE – It is essential that the high voltage is turned off during this operation.

b) When using a tribo charge gun, adjust the delivery air pressure to 300 kPa (= 3 bar) and measure the powder flow rate as described in the first paragraph of 7.3.