SLOVENSKI STANDARD SIST EN 13009:2001 01-september-2001 ## Higrotermalne lastnosti gradbenih materialov in proizvodov - Ugotavljanje vlažnostnega razteznostnega koeficienta Hygrothermal performance of building materials and products - Determination of hygric expansion coefficient Wärme- und feuchtetechnisches Verhalten von Baustoffen und Bauprodukten - Bestimmung des hygrischen Dehnkoeffizienten De Performance hygrothermique des matériaux et produits pour le bâtiment - Détermination du coefficient d'expansion hydrique https://standards.iteh.ai/catalog/standards/sist/f8dc1561-06ed-42d5-802a- Ta slovenski standard je istoveten z: EN 13009-2001 ICS: 91.100.01 Gradbeni materiali na Construction materials in splošno general SIST EN 13009:2001 en SIST EN 13009:2001 # iTeh STANDARD PREVIEW (standards.iteh.ai) SIST EN 13009:2001 https://standards.iteh.ai/catalog/standards/sist/f8dc1561-06ed-42d5-802a-3bc9461fe610/sist-en-13009-2001 ## EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM EN 13009 January 2000 ICS 91.100.01 #### English version ## Hygrothermal performance of building materials and products - Determination of hygric expansion coefficient Performance hygrothermique des matériaux et produits pour le bâtiment - Détermination du coefficient d'expansion hydrique Wärme- und feuchtetechnisches Verhalten von Baustoffen und Bauprodukten - Bestimmung des hygrischen Dehnkoeffizienten This European Standard was approved by CEN on 26 November 1999. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions. CEN members are the national standards bodies of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom. SIST EN 13009:2001 https://standards.iteh.ai/catalog/standards/sist/f8dc1561-06ed-42d5-802a-3bc9461fe610/sist-en-13009-2001 EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG Central Secretariat: rue de Stassart, 36 B-1050 Brussels ## **Contents** | | • | page | |------|---------------------------------------|------| | For | eword | 3 | | Intr | oduction | 3 | | 1 | Scope | 4 | | 2 | Normative references | 4 | | 3 | Definitions, symbols and units | | | 4 | Principle | 5 | | 5 | Apparatus | 5 | | 6 | Test specimens | 6 | | 7 | Procedure | 9 | | 8 | Calculation and expression of results | 12 | | 9 | Accuracy | 14 | | 10 | Test report | 15 | | D:L | liography | 16 | # iTeh STANDARD PREVIEW (standards.iteh.ai) SIST EN 13009:2001 https://standards.iteh.ai/catalog/standards/sist/f8dc1561-06ed-42d5-802a-3bc9461fe610/sist-en-13009-2001 #### Foreword This European Standard has been prepared by Technical Committee CEN/TC 89 "Thermal performance of buildings and building components", the secretariat of which is held by SIS. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by July 2000, and conflicting national standards shall be withdrawn at the latest by December 2001. According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom. This document is one of a series of standards on general test methods for the thermal and moisture related properties of building materials and products. ## Introduction iTeh STANDARD PREVIEW (standards.iteh.ai) Many building materials exhibit expansion/contraction characteristics resulting from changes in moisture content. SIST EN 130092001 https://standards.iteh.ai/catalog/standards/sist/f8dc1561-06ed-42d5-802a- This standard specifies a method of measuring the hygric expansion coefficient as a function of moisture content. This coefficient can be used in calculations of material deformations or stresses due to changes in moisture content. Material specifications may impose additional requirements related to the test, e.g. dimensions or numbers of test specimens. This standard is intended to be used as the reference by harmonised product specifications, as far as products do not have properties which make application of this standard difficult. Page 4 EN 13009:2000 #### 1 Scope This standard specifies a procedure for determining the hygric expansion or contraction behaviour of building materials as a function of moisture content. It is applicable for mineral, porous hygroscopic materials. For other materials showing moisture-induced deformations, the procedure described can be applied in a suitable way taking into account their specific moisture behaviour. This standard is relevant to material states when reversible expansion/contraction processes may be assumed, but not to states governed by irreversible processes such as shrinkage after material production or after initial drying. #### 2 Normative references This standard incorporates, by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed below. For dated references, subsequent amendments to or revisions of these publications apply to this standard only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies. EN ISO 9346 Thermal insulation - Mass transfer - Physical quantities and definitions (ISO 9346:1987) REVIEW EN ISO 12570 Hygrothermal performance of building materials and products - Determination of moisture content by drying at elevated temperature (ISO/FDIS 12570:1999)^{09:2001} https://standards.iteh.ai/catalog/standards/sist/f8dc1561-06ed-42d5-802a- EN ISO 12571 Hygrothermal performance of building materials and products - Determination of hygroscopic sorption properties (ISO/FDIS 12571:1999) prEN ISO 12572:2000 Hygrothermal performance of building materials and products - Determination of water vapour transmission properties (ISO/DIS 12572:1997) ## 3 Definitions, symbols and units #### 3.1 Definitions For the purposes of this standard, the terms and definitions given in EN ISO 9346 and the following apply. #### 3.1.1 #### free water saturation maximum water uptake under normal pressure conditions (without overpressure or vacuum) #### 3.1.2 #### reference length the length of the specimen, between measuring points, in the dry state #### 3.1.3 #### hygric strain ratio of measured length change to the reference length as a function of moisture content #### 3.1.4 #### hygric expansion coefficient ratio of difference in hygric strain to difference in moisture content as a function of moisture content. #### 3.2 Symbols and units | Symbol | Quantity | Unit | |--------------------------------|--|-------| | l | length dimension of specimen along the measuring axis | M | | l_0 | Reference length of the dry specimen | M | | $ \stackrel{\circ}{\Delta l} $ | length change of specimen caused by a change in moisture content | M | | и | moisture content, mass by mass | kg/kg | | Δu | Difference in moisture content between two successive states | kg/kg | | $u_{\rm f}$ | free water saturation | kg/kg | | l ε _h | hygric strain (standards.iteh.ai) | - | | $\alpha_{\rm h}$ | hygric expansion coefficient | _ | ### 4 **Principle** 3bc9461fe610/sist-en-13009-2001 The hygric expansion coefficient is calculated by relating the measured length change of a specimen, caused by a defined change in moisture content, to the length of the specimen in the dry state and to the difference in moisture content. The length change measurement is carried out continuously in the direction of the largest dimension of a prismatic specimen starting and ending in a state of equilibrium. The wetting or drying process is carried out in several steps of controlled moisture content change, in order to obtain the hygric expansion coefficient as a function of moisture content. Measurements are carried out under isothermal conditions to avoid superimposed temperature induced deformations. ## 5 Apparatus The test apparatus shall include the following. - a) Measuring instruments for determining specimen dimensions to an accuracy of ± 0,1 mm. - b) Measuring devices for length change measurements which do not obstruct free hygric dilatation and are not sensitive to temperature and humidity changes. These shall include length change measuring sensors with an accuracy of ± 0.001 mm, with continuous data logging during the recording of positive and negative length changes along the measuring axis of the specimen. The sensors shall be either: Page 6 EN 13009:2000 - capable of maintaining defined and reproducible contact with a gauge plug attached to the end of the test specimen; or - attached to one or two long sides of the specimen parallel to the measuring axis such that the measuring tips of the sensor are in permanent contact with the specimen over a distance between the tips (the reference length) of nearly the specimen length. NOTE Suitable length change measuring systems include inductive movement sensors, mechanical dial gauges, optical systems with a measuring magnifier and laser optical systems (interferometry). Systems having mechanical contact with the specimen, e.g. via plugs on the specimen, shall have good reproducibility (spherical/point contact, suitable contact force, non-corrosive plugs, etc.). - c) Measuring chamber (climatic chamber or test box or similar) capable of providing variable steps in relative humidity between about 10 % relative humidity and about 95 % relative humidity at constant temperature (e.g. 20 °C or 23 °C), maintaining constant conditions in each step within ± 2 % relative humidity and ± 1 K. If test boxes or desiccators with saturated aqueous solutions are used (see EN ISO 12571), they should be placed in a constant-temperature chamber with the specified temperature conditions. - d) Balance capable of weighing test specimens and water supply equipment to an accuracy of ± 0.01 % of their mass. - e) Ventilated oven for specimen drying at elevated temperatures with specifications according to EN ISO 12570.9461fe610/sist-en-13009-2001 - f) Desiccator with desiccant so that dried specimens may be cooled down to test temperature while maintaining dry conditions (desiccants according to prEN ISO 12572:2000). - g) Suitable and regularly calibrated sensors for temperature and humidity control within the measuring chamber, possibly with a continuous recording system. - h) Hypodermic syringe of suitable volume for water supply. ## 6 Test specimens #### 6.1 General Test specimens shall be representative of the material, taking account of any guidance given in material standards. If the material to be tested is suspected of being anisotropic, two sets of test specimens shall be cut so that measurements can be made in different anisotropic directions. #### **6.2** Dimensions of test specimens The test specimens shall be prisms with their largest dimension used as the measuring axis. Test specimen dimensions shall be in accordance with material standards, where possible. NOTE Suitable dimensions include $40 \text{ mm} \times 40 \text{ mm} \times 160 \text{ mm}$, $20 \text{ mm} \times 20 \text{ mm} \times 160 \text{ mm}$, $40 \text{ mm} \times 10 \text{ mm} \times 200 \text{ mm}$, $20 \text{ mm} \times 10 \text{ mm} \times 200 \text{ mm}$, or similar. The ratio of length to cross sectional dimensions should be as large as possible in order to reach moisture equilibrium after drying or wetting steps as quickly as possible, whilst ensuring that the specimen remains representative of the material structure. #### 6.3 Number of test specimens A minimum of three specimens shall be tested. #### 6.4 Preparation of test specimens Preparation methods shall not change the original structure of material. The surfaces of the test prisms shall be plane and rectangular. Two gauge plugs shall be attached either to the opposite faces of the specimen at either end of the long axis or, if necessary, towards the opposite ends of the long side (see figure 1 types A or B). The effects of cutting or attaching of gauge plugs or sensor fixings shall not change the structure or expansion behaviour of the specimens. The masses of plugs, adhesives and fixings, which shall not be made of hygroscopic materials, shall be determined by weighing the specimens before and after attachment in order to enable weight corrections according to 7.2.11. https://standards.iteh.ai/catalog/standards/sist/f8dc1561-06ed-42d5-802a- Measures shall be taken to achieve approximately symmetric and uniform moisture distribution within the specimen after supplying water according to 7.2.6, so as to obtain one-dimensional hygric dilatations without appreciable bending of the specimen. NOTE Suitable measures to achieve approximately symmetric and uniform moisture distribution within the specimen can be e.g.: - for bulky, nearly even-sided cross-sections: sawing a groove almost half as deep as the specimen along the middle of the upper long surface of the specimen; - for bulky, cross sections without even sides: sawing two symmetric sloped grooves along the two opposite smaller long surfaces of the specimen with a depth of about a quarter of the specimen dimension in that direction; - for flat cross sections: forming two lateral grooves, to retain the water, with non-obstructive mastics bulges at the bottom of the two opposite smaller long surfaces of the specimen.