INTERNATIONAL STANDARD

ISO

Textiles - Tests for colour fastness -

 Part J03:
iTeh STACulation of colour differences
 (standards.iteh.ail)
 Textiles - Essais de solidité des teintures -
 Partie J03: Galcut dessdifférences de couleur

https://standards.iteh.ai/catalog/standards/sist/c6aebeb5-954a-4a98-a388-
fc949e9104b9/iso-105-j03-1995

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting EVIEW a vote.

International Standard ISO 105-J03 was prepared by Technical Committee ISO/TC 38, Textiles, Subcommittee SC 1, Tests for coloured textiles and colorants.
https $/ / /$ standards.teh.aicatalogstandards/sistc6aebeb5-954a-4a98-a388-
This first edition of ISO 105-J03 constitutes a partiat revision of the thira edition of ISO 105-J01:1989.

ISO 105 was previously published in thirteen "parts", each designated by a letter (e.g. "Part A"), with publication dates between 1978 and 1985. Each part contained a series of "sections", each designated by the respective part letter and a two-digit serial number (e.g. "Section A01"). These sections are now being republished as separate documents, themselves designated "parts" but retaining their earlier alphanumeric designations. A complete list of these parts is given in ISO 105-A01.

Annexes A, B and C of this part of ISO 105 are for information only.

[^0]
Textiles - Tests for colour fastness

Part J03:

Calculation of colour differences

1 Scope

This part of ISO 105 provides a method of calculating the colour difference between two specimens of the same material, measured under the same conditions, such that the numerical value $\Delta E_{\text {cmc }}(l: c)$ for the total colour difference quantifies the extent to which the two specimens do not match. It permits the specification of a maximum value (tolerance) which depends only on the closeness of match required for a given end-use and not on the colour involved, nor on the nature of the colour difference. The method also provides a means for establishing the ratio of differences in lightness to chroma and to huearas.lteh.al)

NOTE 1 Annex A gives guidance on the interpretation of results. Annex B provides sample test data for use in checking computer programs. Annex C contains a sample computer program for calculating colour difference.
fc949e9104b9/iso-105-j03-1995

2 Principle

The $\mathrm{CIE}^{11} 1976 L^{*} a^{*} b^{*}$ (CIELAB) colour space has been modified to enhance its visual uniformity when calculating the colour difference between two specimens. The modifications to CIELAB by the CMC equation provide a numerical value, ΔE_{cmc}, which describes the colour difference between a sample and a reference in a more nearly uniform colour space. This permits the use of a single-number tolerance ("acceptability tolerance" or "pass/fail tolerance") for judging the acceptability of a colour match in which the tolerance is independent of the colour of the reference. The ellipsoid semi-axes ($l S_{\mathrm{L}}, c S_{\mathrm{C}}$ and S_{H}) used to derive ΔE_{cmc} provide a means to interpret the three separate components of colour difference (lightness, chroma and hue) in manners suitable for a wide range of uses.

The equation for ΔE_{cmc} describes an ellipsoidal boundary (with axes in the directions of lightness, chroma and hue) centred about a reference. The agreed-upon $\Delta E_{\text {cmc }}$ acceptability tolerance describes a volume within which all specimens are acceptable matches to the reference.

The colour difference is composed of three components that comprise the differences between the reference and the specimen. These are:
a) a lightness component that is weighted by the lightness tolerance $\left(\Delta L^{*} \mid l S_{\mathrm{L}}\right)$. This is represented as ΔL_{cmc}.

If the ΔL_{cmc} is positive, the specimen is lighter than the reference. If the ΔL_{cmc} is negative, the specimen is darker than the reference;
b) a chroma component that is weighted by the chroma tolerance ($\Delta C^{*}{ }_{\mathrm{ab}} / C S_{\mathrm{c}}$). This is represented as ΔC_{cmc}.

[^1]If the ΔC_{cmc} is positive, the specimen is more chromatic than the reference. If the ΔC_{cmc} is negative, the specimen is less chromatic than the reference;
c) a hue component that is weighted by the hue tolerance $\left(\Delta H^{*}{ }_{\mathrm{ab}} / S_{\mathrm{H}}\right)$. This is represented as ΔH_{cmc}.

If the ΔH_{cmc} is positive, the hue difference of the specimen is anti-clockwise from the reference in the CIELAB a^{*}, b^{*} diagram. If the ΔH_{cmc} is negative, the hue difference of the specimen is clockwise from the reference in the CIELAB a^{*}, b^{*} diagram.

3 Procedure

3.1 Calculation of CIELAB values

Calculate the CIELAB $L^{*}, a^{*}, b^{*}, C^{*}{ }_{\mathrm{ab}}, h_{\mathrm{ab}}$ values from the X, Y, Z tristimulus values for both the reference and specimen as follows:
$L^{*}=116\left(Y / Y_{n}\right)^{1 / 3}-16$ if $Y / Y_{n}>0,008856$
or
$L^{*}=903,3\left(Y \mid Y_{n}\right)$ if $Y \mid Y_{n} \leqslant 0,000^{\circ} 856 / \bigcap$ STANDARD PREVILEW
$a^{*}=500\left[f\left(X / X_{n}\right)-f\left(Y / Y_{n}\right)\right] ;$
(standards.iteh.ai)
$b^{*}=200\left[f\left(Y / Y_{n}\right)-f\left(Z / Z_{n}\right)\right]$
ISO 105-J03:1995
https://standards.iteh.ai/catalog/standards/sist/c6aebeb5-954a-4a98-a388-
fc949e9104b9/iso-105-j03-1995
$f\left(X / X_{n}\right)=\left(X / X_{n}\right)^{1 / 3}$ if $X / X_{n}>0,008856$
or
$f\left(X / X_{n}\right)=7,787\left(X / X_{n}\right)+16 / 116$ if $X / X_{n} \leqslant 0,008856 ;$
$f\left(Y / Y_{n}\right)=\left(Y / Y_{n}\right)^{1 / 3}$ if $Y / Y_{n}>0,008856$
or
$f\left(Y / Y_{n}\right)=7,787\left(Y / Y_{n}\right)+16 / 116$ if $Y / Y_{n} \leqslant 0,008$ 856;
$f\left(Z \mid Z_{n}\right)=\left(Z \mid Z_{n}\right)^{1 / 3}$ if $Z / Z_{n}>0,008856$
or
$f\left(Z \mid Z_{n}\right)=7,787\left(Z \mid Z_{n}\right)+16 / 116$ if $Z \mid Z_{n} \leqslant 0,008$ 856;
$C^{*}{ }_{\mathrm{ab}}=\left(a^{* 2}+b^{* 2}\right)^{1 / 2} ;$
$h_{\mathrm{ab}}=\arctan \left(b^{*} \mid a^{*}\right)$ expressed on a 0° to 360° scale with the a^{*} positive axis being 0° and the b^{*} positive axis at 90°.

For these equations, X_{n}, Y_{n} and Z_{n} are the tristimulus values of the illuminant/observer combination in which it is desired to calculate $\mathrm{CMC}(l: c)$ colour differences. The preferred illuminant/observer combination is $\mathrm{D}_{65} / 10^{\circ}$. Table 1 gives the values for this and five other combinations.

Table 1 - Tristimulus values for six illuminant/observer combinations

Illuminant/observer combinations	X_{n}	y_{n}	Z_{n}
$\mathrm{D}_{65} / 10^{\circ}$	94,811	100,00	107,304
$\mathrm{D}_{65} / 2^{\circ}$	95,047	100,00	108,883
$\mathrm{C} / 0^{\circ}$	97,285	100,00	116,145
$\mathrm{C} / 2^{\circ}$	98,074	100,00	118,232
$\mathrm{~A} / 10^{\circ}$	111,144	100,00	35,200
$\mathrm{~A} / 2^{\circ}$	109,850	100,00	35,585

3.2 Calculation of CIELAB colour differences values

Calculate the CIELAB colour differences $\Delta L^{*}, \Delta a^{*}, \Delta b^{*}, \Delta C^{*}{ }_{a b}, \Delta E^{*}{ }_{a b}, \Delta H^{*}{ }_{\text {ab }}$ using the following equations, in which the subscripts R and S refer respectively to the reference and specimen CIELAB values:
where
https://standards.iteh.ai/catalog/standards/sist/c6aebeb5-954a-4a98-a388-
fc949e9104b9/iso-105-j03-1995
$p=1$ if $m \geqslant 0$
or
$p=-1$ if $m<0$
and $q=1$ if $|m| \leqslant 180$
or
$q=-1$ if $|m|>180$
where $m=h_{\mathrm{ab}, \mathrm{S}}-h_{\mathrm{ab}, \mathrm{R}}$
in which $|\ldots|$ indicates that the positive value is to be used regardless of the sign of the expression between the two lines.
or the equivalent

$$
\Delta H_{\mathrm{ab}}^{*}=t\left[2\left(C_{\mathrm{ab}, \mathrm{~S}}^{*} C^{*}{ }_{\mathrm{ab}, \mathrm{R}}-a_{\mathrm{S}}^{*} a_{\mathrm{R}}^{*}-b_{\mathrm{S}}^{*} b_{\mathrm{R}}^{*}\right)\right]^{1 / 2}
$$

where

$$
\begin{aligned}
& t=1 \text { if } a^{*}{ }_{\mathrm{S}}{ }^{*}{ }_{\mathrm{R}} \leqslant a^{*}{ }_{\mathrm{R}} b_{\mathrm{S}}^{*} \\
& \text { or }
\end{aligned}
$$

$$
t=-1 \text { if } a_{\mathrm{S}}^{*} b^{*}{ }_{\mathrm{R}}>a_{\mathrm{R}}^{*} b_{\mathrm{S}}^{*}
$$

$$
\begin{aligned}
& \Delta L^{*}=L_{S}^{*}-L^{*}{ }_{R} ; \\
& \Delta a^{*}=a_{S}^{*}-a^{*}{ }_{R} ; \\
& \Delta b^{*}=b^{*}{ }_{S}-b^{*}{ }_{R} \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& \Delta E_{\mathrm{ab}}^{*}=\left[\left(\Delta L^{*}\right)^{2}+\left(\Delta a^{*}\right)^{2}+\left(\Delta b^{*}\right)^{2}\right]_{\text {Standal dis.iteh.ai) }}^{1 / 2} \\
& \Delta H^{*}{ }_{\mathrm{ab}}=p q\left[\left(\Delta E_{\mathrm{ab}}\right)^{2}-\left(\Delta L^{*}\right)^{2}-\left(\Delta C^{*}{ }_{\mathrm{ab}}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

3.3 Calculation of the CMC colour difference, $\Delta E_{\text {cmc }}(l: c)$

The CMC colour difference is obtained from the following equation:

$$
\Delta E_{\mathrm{cmc}}(l: c)=\left[\left(\Delta L^{*} / l S_{\mathrm{L}}\right)^{2}+\left(\Delta C_{\mathrm{ab}}^{*} / c S_{\mathrm{c}}\right)^{2}+\left(\Delta H_{\mathrm{ab}}^{*} / S_{\mathrm{H}}\right)^{2}\right]^{1 / 2}
$$

Calculate the ellipsoid semi-axes from the $L^{*}{ }_{R}, C_{\text {ab. } R}^{*}$ and the $h_{\mathrm{ab} . \mathrm{R}}$ of the reference as follows:

$$
S_{\mathrm{L}}=0,040975 L_{\mathrm{R}}^{*} /\left(1+0,01765 L_{\mathrm{R}}^{*}\right) \quad \text { if } L_{\mathrm{R}}^{*} \geqslant 16
$$

or
$S_{\mathrm{L}}=0,511 \quad$ if $L_{\mathrm{R}}{ }_{\mathrm{R}}<16$;
$S_{\mathrm{c}}=\left[0,0638 C^{*}{ }_{\mathrm{ab}, \mathrm{R}} /\left(1+0,0131 C^{*}{ }_{\mathrm{ab}, \mathrm{R}}\right)\right]+0,638 ;$
$S_{\mathrm{H}}=(F T+1-F) S_{\mathrm{c}}$
where

$$
\begin{aligned}
& F=\left\{\left(C^{*}{ }_{\mathrm{ab}, \mathrm{R}}\right)^{4} \mid\left[\left(C_{\mathrm{ab}, \mathrm{R}}\right)^{4}+1900\right]\right\}^{1 / 2} ; \\
& T=0,36+\left|0,4 \cos \left(35+h_{\mathrm{ab}, \mathrm{R}}\right)\right| \quad \text { if } h_{\mathrm{ab}, \mathrm{R}} \geqslant 345^{\circ} \text { or } h_{\mathrm{ab}, \mathrm{R}} \leqslant 164^{\circ}
\end{aligned}
$$

or
$T=0,56+10,2 \cos \left(168+h_{\mathrm{ab}, \mathrm{R}} \mathrm{i}^{\prime}\right.$ Teln $\mathbb{S i f}^{\prime} 164<h_{\mathrm{ab}, \mathrm{R}}<3455^{\circ}$. PREVIEW
NOTE 2 The value of l is usually set to 2,0. The value of c should always remain at 1,0 . This fixes the ratio of the three semi-axes to best correlate with visual assessment of typical textile samples. Other values of l may be required in cases where the surface characteristics significantly differ from those offlat textiles. 1995

https://standards.iteh.ai/catalog/standards/sist/c6aebeb5-954a-4a98-a388-

4 Report of calculations

fc949e9104b9/iso-105-j03-1995
The report shall include the following information:
a) the number and year of publication of this part of ISO 105, i.e. ISO 105-J03:1995;
b) all details necessary for complete identification of the sample and reference specimen(s) tested;
c) identification of the spectrophotometer or colorimeter, including the CIE geometry type, with which the input data was obtained;
d) the ΔE_{cmc} value(s) of the test specimen(s);
e) the values of l and $c[$ e.g. $\operatorname{CMC}(2: 1)]$;
f) the illuminant and observer conditions used in the calculations (e.g. $\mathrm{D}_{65} / 10^{\circ}$);
g) if applicable, the acceptability tolerance used in making pass/fail judgements (see annex A);
h) if required, the CMC component colour differences, $\Delta L_{\mathrm{cmc}}, \Delta C_{\mathrm{cmc}}$ and ΔH_{cmc};
i) if required, the CIELAB $L^{*}, a^{*}, b^{*}, C^{*}$ ab and h_{ab} values for reference and test specimen(s) and the associated $\Delta L^{*}, \Delta a^{*}, \Delta b^{*}, \Delta C^{*}$ ab and $\Delta H_{\text {ab }}^{*}$ values;
j) date of the report.

Annex A
 (informative)

Interpretation of results

For purposes of determining acceptability of colour match for some specific purpose, the user should determine a "tolerance" which is agreeable to all parties involved. The ΔE_{cmc} value calculated between a specimen and a reference, when compared to this agreed-upon tolerance, provides a means of determining if a specimen is an acceptable match to the reference. Specimens which are compared to a reference will fall into two categories: those for which the $\Delta E_{\text {cmc }}$ values are less than or equal to the agreed-upon tolerance are acceptable (pass), while those for which the ΔE_{cmc} values are greater than the agreed-upon tolerance are unacceptable (fail).

The equation for $\Delta E_{\mathrm{cmc}}=1,0$ describes an ellipsoidal boundary (with axes in the directions of lightness, chroma and hue) centred about a reference. The ellipsoid semi-axes lengths are defined by $l S_{\mathrm{L}}, c S_{\mathrm{c}}$ and S_{H}, and when multiplied by the agreed-upon tolerance describe a volume within which all specimens are acceptable matches to the reference.

In some applications, the acceptable specimens need to be sorted into groups such that the specimens within any one group are very close colour matches to each other and could be used, for example, to manufacture a single garment. In such applications (e.g. rectancular " 555 " sorting) it becomes necessary to define subvolumes of acceptability. The dimensions of each subvolume may be developed by using the ratio of the three semi-axes of the CMC volume and dividing the total acceptance volume by the number of such subvolumes. For " 555 " sorting this is illustrated in figure A.1.
(standards.iteh.ai)
Although the total colour difference ΔE_{cmc} is valid for achromatic specimens, the method of partitioning this difference is not valid when $C^{*}{ }_{a b, R} \leqslant 4,0$ except for lightness differences. When $C^{*}{ }_{a b, R} \leqslant 4,0$, the chroma and hue difference components often do not correspond with visual assessments. The use of the individual components for determining the size of the individual sortdoxes,for sorting purposes is still valid.

Figure A. 1 - " 555 " sort blocks within acceptance volume (2-dimensional view)

Annex B

(informative)

Representative test data

To help check computer programs giving $\Delta E_{\text {cmc }}$ values from the CMC equation, some representative test data are given in table B.1. The data are for illuminant D_{65} and the 10° observer using $X_{n}=94,881, Y_{n}=100,00$ and $Z_{n}=107,304$ (from table 1). The six reference pair colours shown are red, blue, yellow, green, grey and another red. The $l: c$ ratio used is $2: 1$.

Table B. 1 - Test data for the CMC(2:1) formula ($\mathrm{D}_{65} / 10$)

Pair	Tristimulus values			CIELAB values			$\Delta E_{\text {cmc }}$
	X	Y	Z	L^{*}	a^{*}	b^{*}	
1	69,566	70,797	67,146	87,39	5,32	7,19	
	68,614	69,698	65,942	86,85	5,59	7,29	0,42
2	53,180	57,467	66,036	80,44	-3,35	-3,84	
	54,385	58,760	67,111	81,16	-3,35	-3,52	0,45
3	63,089	67,667	- 23,125	R 85,84 R K	T-2,45	55,67	
	61,950	66,366	22,565	85,18	-2,28	55,52	0,27
4	23,178	28,245	St21,074210	S. 16011.21	- 15,44	14,97	
	21,895	27,060	20,137	59,03	- 16,64	14,86	0,97
5	12,938	13,590	16,07p 105	J03:143,64	0,35	-3.39	
	12,168	http12,737lards.	eh.ai/15;221/stand	rds/sis42,36 beb5-	54a-0,64-a38	--3,65	0,81
6	14,640	11,100	fc949,9104b9/ip	o-105-i03-1995	27,95		
	14,520	11,190	12,220	39,89	26,57	$-0,57$	2,34

Annex C

(informative)

Computer program for calculating colour difference

This is a simple test program written in BASIC for calculating ΔE_{cmc}. Specific forms of the program may require modification for use on some computer systems.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 105-J03:1995
https://standards.iteh.ai/catalog/standards/sist/c6aebeb5-954a-4a98-a388-
fc949e9104b9/iso-105-j03-1995

[^0]: © ISO 1995
 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

 International Organization for Standardization
 Case Postale 56 - CH-1211 Genève 20 • Switzerland
 Printed in Switzerland

[^1]: 1) Commission Internationale d'Éclairage, Central Bureau, Kegelgasse 27, A-1030, Vienna, Austria.
