INTERNATIONAL STANDARD

ISO 8419

Second edition 1994-07-01

Belt drives — Narrow joined V-belts — Lengths in effective system

iTeh Stransmissions par courroies E Courroies trapézoïdales jumelées étroites — Longueurs dans le système effectif

<u>ISO 8419:1994</u> https://standards.iteh.ai/catalog/standards/sist/9baf0358-7cb4-4fac-8e4c-4593f0836372/iso-8419-1994

Reference number ISO 8419:1994(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting VIEW a vote.

(standards.iteh.ai)

International Standard ISO 8419 was prepared by Technical Committee ISO/TC 41, Pulleys and belts (including veebelts), Subcommittee SC 1, Veebelts and grooved pulleys.

Veebelts and grooved pulleys. https://standards.iteh.ai/catalog/standards/sist/9baf0358-7cb4-4fac-8e4c-

This second edition cancels and replaces⁰⁸³the^{2/is}first¹⁹⁻¹⁹¹⁴ edition (ISO 8419:1987), which has been technically revised.

© ISO 1994

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization

Case Postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Belt drives — Narrow joined V-belts — Lengths in effective system

1 Scope

This International Standard specifies, for narrow joined V-belts of cross-sections

9J (for pulley grooves of effective width 8,9 mm);

15J (for pulley grooves of effective width 15,2 mm);

Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 3:1973, Preferred numbers — Series of preferred numbers.

ISO 1081:1980, Drives using V-belts and grooved pulleys — Terminology.

- 20J (for pulley grooves of effective width 20,9 mm); RDISO 5290:1993, Belt drives Grooved pulleys for joined narrow V-belts Groove sections 9J, 15J, 20J, 25J (for pulley grooves of effective width 25,4 mm); CS. and 25J (effective system).
- the recommended effective lengths, https://standards.iteh.ai/catalog/standards/signethod58-for_4_determination of centre distance - the tolerances on effective lengths, 4593f0836372/iso-84variation.
- the centre distance variations,
- the conditions for measuring the effective length and the centre distance variation.

NOTE 1 The narrow joined V-belt cross-section is defined by a number (9, 15, 20 or 25) followed by the letter J.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below.

3 Definitions

For the purposes of this International Standard, the terms and symbols relating to drives using V-belts (i.e. belts and grooved pulleys) defined in ISO 1081 apply.

4 Effective length, L_e

4.1 The standard effective lengths are the effective lengths under tension measured under the conditions specified in 7.1.

4.2 The nominal values of the standard effective lengths, expressed in millimetres, have been selected from the R 40 series of preferred numbers, in accordance with ISO 3.

Standard effective lengths are given in table 1.

¹⁾ To be published. (Revision of ISO 9608:1988)

		Dimensio	ons in millimetre	joiniou v boito		
Cross-section				Dimensions and tolerances in millimetre		
9J	15J	20J	25J	Nominal effective length	Permissible	
	1	- 			deviation for sections 9J,	
630	1 270	1 700	2 540	L _e	15J, 20J and	
670	1 345	1 800	2 690		25J	
710	1 420	1 900	2 840			
760	1 525	2 000	3 000	<i>L</i> _e ≤ 800	± 8	
800	1 600	2 120	3 180	$800 < L_{\rm e} \leqslant 1\ 000$	± 10	
850	1 700	2 240	3 350	1 000 < L _e ≤ 1 250	± 13	
900	1 800	2 360	3 550	1 250 < <i>L</i> _e ≤ 1 600	± 16	
950	1 900	2 500	3 810	-		
1 015	2 030	2 650	4 060	$1\ 600 < L_{\rm e} \leq 2\ 000$	± 20	
1 080	2 160	2 800	4 320	2 000 < <i>L</i> _e ≤ 2 500	± 25	
				2 500 < L _e ≤ 3 150	± 32	
1 145	2 290	3 000	4 570	3 150 < <i>L</i> _e ≤ 4 000	± 40	
1 205 1 270	2 410 2 540	3 150 3 350	4 830 5 080	4 000 < <i>L</i> _e ≤ 5 000	± 50	
1 345	2 690	3 550	5 380	_		
1 420	2 840	3 750	5 690	$5\ 000 < L_{\rm e} \le 6\ 300$	± 63	
				6 300 < <i>L</i> _e ≤ 8 000	± 80	
1 525	3 000	4 000	6 000	$8\ 000 < L_{\rm e} \le 10\ 000$	± 100	
1 600	3 180	4 250 eh	6 350	DARD PR to 000 - L	± 125	
1 700	3 350	4 500	6 730		_	
1 800	3 550	4 750	(3100nd 620	ards.iteh.ai)		
1 900	3 810	5 000	7 620			
2 030	4 060	5 300	8 000 🛽	<u>SO 8419:1994</u>		
2 160	4 320	ht5p600tanda		y/standards/sist/9baf0358-7cb4-4fac-8e4c-		
2 290	4 570	6 000	9 0 <mark>00</mark> 3f08	36372/iso-8419-1994		
2 410	4 830	6 300	9 500	5.2 Belt matching tolerances	for narrow	
2 540	5 080	6 700	10 160	joined V-belts in same set		
2 690	5 380	7 100	10 800			
2 840	5 690	7 500	11 430	Values for the tolerances on the		
3 000	6 000	8 000	12 060	joined V-belts of the same set in mu	ultiple joined V-belt	
3 180	6 350	8 500	12 700	drives are given in table3.		
3 350	6 730	9 000				
3 550	7 100	9 500		Table 3 — Belt matching		
	7 620	10 000		Dimensions and to	lerances in millimetres	
	8 000	10 600		Nominal effective length	Maximum	
	8 500				permissible	
	9 000				deviation	

Table 1 — Standard effective lengths

5 Tolerances on effective lengths

5.1 Manufacturing tolerances

The permissible manufacturing tolerances for effective lengths of narrow joined V-belts are given in table 2.

Table	2	 Manufactur	ing to	lerances	for	narrow
		joined	V-be	ts		
		· · · ·				

Nominal effective length L _e	Maximum permissible deviation between the lengths of belts of the same set for sections 9J, 15J, 20J and 25J
<i>L</i> _e ≤ 1 345	4
$1 345 < L_{\rm e} \leq 2 690$	6
$2\ 690 < L_{\rm e} \leqslant 6\ 000$	10
6 000 < $L_{\rm e} \leq 11$ 430	16
11 430 < L _e	24

Centre distance variations 6

Permissible centre distance variations of any belt are given in table 4.

Table 4 — Centre distance variations

		Dimensio	ons in millimetres	
Nominal effe	ective length	Cross-section		
over	up to (inclusive)	9J, 15J, 20J	25J	
		ΔE		
—	1 000	1,2	1,8	
1 000	2 000	1,6	2,2	
2 000	5 000	2	3,4	
5 000		2,5	3,4	

Measuring and checking 7

Checking belt length 7.1 STANDARI PR eh

The physical dimensions of narrow joined V-belts shall For the measurement of the effective length, set the be designated by belt up on two identical pulleys with an effective circumference in accordance with that given in table 5 the section (see clause 1); and having functional dimensions, in accordance With 19:1994 ISO 5290. The pulleys shalls be mounted on parallel lards/sist/9 the appropriate effective length (see table 1). horizontal axes on a testing bench. Apply to the sliding /iso-8419-1994 **EXAMPLE** pulley the measuring force indicated in table 5. Rotate

the pulleys in order that the belt effects one to three rotations and thus seats properly in the pulley grooves. Measure the distance between the axes of the pulleys.

The effective length $L_{\rm e}$ of any belts is given by the formula

$$L_{\rm e} = E_{\rm max} + E_{\rm min} + C_{\rm e}$$

where

- is the distance between the axes of the Ε measuring pulleys, in millimetres;
- is the measuring pulley effective circum- $C_{\rm e}$ ference, in millimetres.

Belt section	Effective circumference of the measuring pulleys mm	Measuring force N
9J	300	445
15J 20J	600 800	1 000 1 500
25J	1 000	2 225

7.2 Checking centre distance variation

Check the centre distance variations in accordance with ISO 9608.

Designation and marking 8

8.1 Designation

A belt of section 9J and effective length 1 600 mm is designated as follows:

9J 1 600

8.2 Marking

All narrow joined V-belts manufactured in accordance with this International Standard shall be marked legibly and durably on the outer non-working face with the appropriate designation.

Table 5 — Measurement characteristics

iTeh STANDARD PREVIEW This page intentionally left blank (standards.iteh.ai)

ISO 8419:1994 https://standards.iteh.ai/catalog/standards/sist/9baf0358-7cb4-4fac-8e4c-4593f0836372/iso-8419-1994

iTeh STANDARD PREVIEW This page intentionally left blank (standards.iteh.ai)

ISO 8419:1994 https://standards.iteh.ai/catalog/standards/sist/9baf0358-7cb4-4fac-8e4c-4593f0836372/iso-8419-1994

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 8419:1994</u> https://standards.iteh.ai/catalog/standards/sist/9baf0358-7cb4-4fac-8e4c-4593f0836372/iso-8419-1994

ICS 21.220.10

Descriptors: belt drives, belts, power transmission belts, V-belts, dimensions, length, dimensional measurements, designation, marking.

Price based on 3 pages