

Edition 3.0 2024-09

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Protection against lightning – Part 4: Electrical and electronic systems within structures

Protection contre la foudre – Partie 4: Réseaux de puissance et de communication dans les structures

IEC 62305-4:2024

https://standards.iteh.ai/catalog/standards/iec/ff947301-2550-4bd6-a86d-f4fd88f3a21b/iec-62305-4-2024

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2024 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

4.2024

https:Centre:sales@iec.chi/catalog/standards/iec/ff947301-2550-4bd6-a86d-f4fd88f3a21b/iec-62305-4-2024

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -

webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études, ...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Découvrez notre puissant moteur de recherche et consultez gratuitement tous les aperçus des publications, symboles graphiques et le glossaire. Avec un abonnement, vous aurez toujours accès à un contenu à jour adapté à vos besoins.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 500 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 25 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Edition 3.0 2024-09

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Protection against lightning – Standards Part 4: Electrical and electronic systems within structures

Protection contre la foudre – Partie 4: Réseaux de puissance et de communication dans les structures

IEC 62305-4:2024

https://standards.iteh.ai/catalog/standards/iec/ff947301-2550-4bd6-a86d-f4fd88f3a21b/iec-62305-4-2024

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 29.020, 91.120.40

ISBN 978-2-8322-7933-5

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FOREWORD			8
IN	ITRODU	ICTION	10
1	Scop	е	11
2	Norm	native references	11
3	Term	s and definitions	12
4	Desig	gn and installation of SPM	16
	4.1	General	16
	4.2	Design of SPM	20
	4.3	Lightning protection zones (LPZs)	20
	4.3.1	General	20
	4.3.2	Outer zones	20
	4.3.3	Inner zones	21
	4.4	Basic SPM	23
5	Earth	ning and bonding networks	24
	5.1	General	24
	5.2	Earth-termination system	25
	5.3	Bonding network	26
	5.4	Bonding bars	31
	5.5	Bonding at the boundary of an LPZ	32
	5.6	Material and dimensions of bonding components	32
6	Magr	netic shielding and line routing	33
	6.1	General	33
	6.2	Spatial shielding	33
	6.3	Shielding of internal lines	33
	6.4	Routing of internal lines	305-34-2024
	6.5	Shielding of external lines	34
	6.6	Material and dimensions of magnetic shields	34
7	Coor	dinated SPD system	34
8	Isola	ting interfaces	35
9	SPM	management	35
	9.1	General	35
	9.2	SPM management plan	36
	9.3	Inspection of SPM	38
	9.3.1	General	38
	9.3.2	Inspection procedure	38
	9.3.3	Inspection documentation	39
	9.4	Maintenance	39
A	nnex A (informative) Basis of electromagnetic environment evaluation in an LPZ	40
	A.1	General	40
	A.2	Damaging effects on electrical and electronic systems due to lightning	40
	A.2.1	Sources of damage	40
	A.2.2	Object of damage	40
	A.2.3	Withstand of equipment signal ports	40
	A.2.4	Withstand of equipment power ports	41
	A.2.5	Relationship between the object of damage and the source of damage	42
	A.3	Spatial shielding, line routing and line shielding	42

A.3.1	General	42
A.3.2	Grid-like spatial shields	45
A.3.3	Line routing and line shielding	47
A.4	Magnetic field inside LPZ	51
A.4.1	Approximation for the magnetic field inside LPZ	51
A.4.2	Numerical magnetic field calculation in case of direct lightning strikes.	57
A.4.3	Experimental evaluation of the magnetic field due to a direct lightning	64
A 5	Surke	01 62
A.5	Calculation of Induced voltages and currents	02
A.5.1	Situation inside LPZ 1 in the case of a direct lightning strike	02
A.J.Z	Situation inside LPZ 1 in the case of a nearby lightning strike	02
Δ.5.4	Situation inside LPZ 2 and higher	
Annex B (informative) Implementation of SPM for an existing structure	
		07
B.1	General	
D.2	Design of SDM for an existing structure	07
D.3	Design of SPM for an existing structure	00
D.4	Design of basic protection measures for LPZS	70
D.4.1	Design of basic protection measures for LPZ 1	70
D.4.2	Design of basic protection measures for LPZ 2	70
D.4.3 P.5	Improvement of an existing LPS using spatial shielding of LPZ 1	
B.5 B.6	Establishment of LPZs for electrical and electronic systems	71
B.0	Protection using a bonding network	71
B.8	Protection by surge protective devices	74 74
B.9	Protection by solating interfaces	75
B.0 B.10	Protection measures by line routing and shielding	70
B.10	Protection measures for externally installed equipment a cucioocontra	
B.11.	1 General	
B.11.	2 Protection of external equipment	
B.11.	3 Protection by maintaining electrical insulation to the LPS	
B.11.	4 Reduction of overvoltages in cables	
B.12	Improving interconnections between structures	
B.12.	1 General	
B.12.	2 Isolating lines	81
B.12.	3 Metallic lines	81
B.13	Integration of new internal systems into existing structures	81
B.14	Overview of possible protection measures	
B.14.	1 Power supply	
B.14.	2 Surge protective devices	
B.14.	3 Isolating interfaces	
B.14.	4 Line routing and shielding	83
B.14.	5 Spatial shielding	83
B.14.	6 Bonding	83
B.15	Upgrading a power supply and cable installation inside the structure	83
Annex C (informative) Selection and installation of a coordinated SPD system	84
C.1	General	
C.2	Selection of SPDs	85
C.2.1	Location of SPDs according to source of damage	

C.2.2	Selection with regard to lightning current I	86
C.2.3	Selection with regard to voltage protection level $U_{\mathbf{p}}$	87
C.2.4	SPD arrangements	92
C.2.5	Equipment protection by two SPDs	92
C.2.6	Equipment connected to two different services	93
C.2.7	Selection with regard to location and discharge current	93
C.2.8	Coordination of the SPD with back-up overcurrent protective device	
• •		96
C.3	Installation of a coordinated SPD system	97
C.3.1		97
C.3.2	Installation location of SPDs	97
0.3.3	Connecting conductors	98
0.3.4	Coordination of SPDs	98
C.3.5	Procedure for installation of a coordinated SPD system	98
Annex D (Informative) Factors to be considered in the selection of SPDs	99
D.1	General	99
D.2	Factors determining the stress experienced by an SPD	99
D.3	Quantifying the statistical threat level to an SPD	101
D.3.1	General	101
D.3.2	Installation factors effecting current distribution	101
D.3.3	Considerations in the selection of SPD ratings: <i>I</i> _{imp} , [<i>I</i> _{max}], <i>I</i> _n , <i>U</i> _{OC}	102
Annex E (informative) Lightning current sharing using simulation modelling	104
E.1	General	104
E.1.1	Overview	104
E.1.2	Methods to determine the lightning current distribution	104
E.2	Lightning current parameters for SPDs	105
E.2.1	Lightning current parameters in accordance with IEC 62305-1	105
E.2.2	Conclusion on lightning current sharing from numerical modelling	105
E.3	Distribution of lightning currents in power supply systems	106
E.3.1	Influencing factors	106
E.3.2	Considerations in lightning current sharing using numerical modelling	108
E.4	Current distribution in structures	111
E.4.1	General	111
E.4.2	Structures with externally installed equipment and non-isolated LPS	112
E.4.3	Tall buildings	113
E.4.4	Transformer located inside a structure	114
Annex F (informative) Lightning current sharing in photovoltaic installations	115
F.1	General	115
F.2	Structures with roof-mounted PV systems	117
F.2.1	Description and assumptions	117
F.2.2	Simplified calculation for the lightning current flowing in DC conductors .	117
F.3	Outside free-field power plant with a non-isolated LPS	119
F.3.1	General	119
F.3.2	Finding the lightning current flowing through the DC conductor via the	400
ГЗЗ	Gru Results	1∠0 120
Anney G /	informative) Testing system level behaviour under lightning discharge	120
conditions		122
G.1	General	122

G.2	SPD discharge current test under normal service conditions	122
G.3 I	Induction test due to lightning currents	122
G.4 I	Recommended test classification of system level immunity (IEC 61000-4-5)	122
Annex H (i	nformative) Induced voltage in the circuits protected by an SPD	124
H.1 (General	124
H.2 I	Direct flashes to the structure (Figure H.1)	124
H.3 I	Flashes near the structure (Figure H.2)	12
H.4 I	Flashes to the service	126
Annex I (in	formative) Isolation interfaces using surge isolation transformers (SITs)	128
l.1 \$	SIT for low-voltage power distribution system	128
1.2	SIT for communication systems	128
1.3	SIT surge mitigation performance (low-voltage power distribution systems)	128
Bibliograph	ıy	130
Figure 1 –	General principle for the division into different LPZs	17
Figure 2 –	Examples of possible SPM (LEMP protection measures)	19
Figure 3 –	Examples of interconnected LPZs	22
Figure 4 –	Examples of extended lightning protection zones	23
Figure 5 – network int	Example of a three-dimensional earthing system consisting of the bonding	2
Figure 6 –	Meshed earth-termination system of a plant	26
Figure 7 –	Utilization of reinforcing rods of a structure as a protection measure against	2
Figure 8 -	Equipotential bonding in a structure with steel reinforcement	20
Figure 0	Integration of conductive parts of internal systems into the bonding network	Z.
Figure 9 –	- Combinations of integration methods of conductive parts of internal	205.0
systems in	to the bonding network	30.33
Figure A.1	– LEMP situation due to lightning strike to the structure	42
Figure A.2 by damped	– Simulation of the rise of the field of the subsequent stroke (0,25/100 μs) I 1 MHz oscillations (multiple impulses 0,2/0,5 μs)	4
Figure A.3	- Large volume shield built by metal reinforcement and metal frames	40
Figure A.4	- Volume for electrical and electronic systems inside an inner LPZ n	4
Figure A.5	- Reducing induction effects by line routing and shielding measures	48
Figure A.6	- Example of SPM for an office building	50
Figure A.7	- Evaluation of the magnetic field values in case of a direct lightning strike	5
Figure A.8	- Evaluation of the magnetic field values in case of a nearby lightning strike	53
Figure A.9	- Distance s ₂ depending on rolling sphere radius and structure dimensions	56
Eiguro A 1	Types of structure geometrics with different volume shields	50
Figure A.1	 Magnetic field strength <i>U</i> where inside a grid like shield for the subic 	50
structure s	hown in Figure A.10 [14]	59
Figure A.12 structure a	2 – Magnetic field strength $H_{1/MAX}$ inside a grid-like shield for the cubic ccording to mesh width	60
Figure A.1	3 – Low-level test to evaluate the magnetic field inside a shielded structure	6
Figure A.14	4 – Voltages and currents induced into a loop formed by lines	62
Figure R 1	- SPM design steps for an existing structure	70
Figure R 2	- Methods of establishing I P7s in existing structures	70
FIGULE D.2	- memory of establishing LFZS in existing structures	

Figure B.3 – Reduction of loop area using shielded cables close to a metal plate	76
Figure B.4 – Example of a metal plate for additional shielding	76
Figure B.5 – Protection of aerials and other external equipment	78
Figure B.6 – Separation distance maintained or not maintained	79
Figure B.7 – Inherent shielding provided by bonded ladders and pipes	80
Figure B.8 – Ideal positions for lines on a mast (cross-section of steel lattice mast)	80
Figure B.9 – Upgrading of the SPM in existing structures	82
Figure C.1 – Selection of SPDs by source of damage	86
Figure C.2 – Example of installation of an SPD to reduce the effect of SPD lead length	88
Figure C.3 – Surge voltage between live conductor and bonding bar	91
Figure C.4 – Equipment with two ports and SPDs on both services bonded to two different earthing points of a non-equipotential earthing system	93
Figure D.1 – Installation example of SPD test class I, class II and class III in a TN system	100
Figure D.2 – Basic example of different sources of damage to a structure and lightning current distribution within a system	101
Figure D.3 – Example of the simplified current distribution in a TN power distribution system	102
Figure E.1 – Approach to computer simulation used to analyse lightning current sharing	105
Figure E.2 – MEN earthing system	108
Figure E.3 – Parallel connected structures	109
Figure E.4 – Influence of lightning current flow in parallel connected structures	109
Figure E.5 – Influence of lightning current flow in star connected structures	110
Figure E.6 – Influence of other metallic conductive services on lightning current IEC.62305-42024	110
Figure E.7 – Influence of lightning current flow from S3 events	$\frac{305}{111}$ $\frac{4}{202}$
Figure E.8 – Structures with externally installed equipment and non-isolated LPS	112
Figure E.9 – Protection of internally located sub-station transformers	114
Figure F.1 – Current sharing between LPS down conductors and the internal cabling of a PV system in which the separation distance s has not been maintained	116
Figure F.2 – Protection of a roof-mounted PV system	117
Figure F.3 – Free-field PV power plant with multiple earthing and meshed earthing system	120
Figure G.1 – Example circuit of an SPD discharge current test under service conditions	123
Figure G.2 – Example circuit of an induction test due to lightning currents	123
Figure H.1 – Induced loop by a lightning current on the structure	125
Figure H.2 – Induced loop by a lightning current near the structure	125
Figure I.1 – Use of SPDs to protect windings of SIT	129
Table 1 – Minimum cross-sections for bonding components	33
Table 2 – SPM management plan for new buildings and for extensive changes in construction or use of existing buildings	37
Table A.1 – Rated impulse voltage of equipment per IEC 60364-4-44:2007, Clause 443 and IEC 60364-4-44:2007/AMD1:2015, Clause 443	41
Table A.2 – Parameters relevant to source of harm and equipment	43

Table A.3 – Examples for $I_{0/MAX}$ = 100 kA and w_{m} = 2 m	53
Table A.4 – Attenuation of the magnetic field of grid-like spatial shields for a plane wave	54
Table A.5 – Rolling sphere radius corresponding to maximum lightning current	56
Table A.6 – Examples for $I_{0/MAX}$ = 100 kA and w_{m} = 2 m corresponding to	
<i>SF</i> = 12,6 dB	57
Table B.1 – Structural characteristics and surroundings	67
Table B.2 – Installation characteristics	68
Table B.3 – Equipment characteristics	68
Table B.4 – Other questions to be considered for the protection concept	68
Table B.5 – Type of LPS	68
Table C.1 – Required rated impulse voltage of equipment	87
Table C.2 – Connection of the SPD dependent on supply system	94
Table C.3 – Selection of impulse discharge current (I_{imp}) where the building is protected against direct lightning strike (S1) based on simplified rules	95
Table C.4 – Nominal discharge current (<i>I</i> _n) in kA depending on supply system and connection type	95
Table C.5 – Selection of impulse discharge current (I_{imp}) where the building is protected from direct strikes to the line (S3).	96
Table D.1 – Preferred values of I _{imp}	99
Table E.1 – General trends associated with protection installations for different power distribution systems	107
Table F.1 – Simplified calculated values of I_{imp} ($I_{10/350}$) and I_n ($I_{8/20}$) for voltage- limiting SPDs on the DC side of a PV installation mounted on the roof of a building with an external LPS if the separation distance is not maintained (see Figure F.1)	118
Table F.2 – Simplified calculated values of I_{imp} ($I_{10/350}$) for voltage switching SPDs 62 on the DC side of a PV installation mounted on the roof of a building with an external LPS if the separation distance is not maintained (see Figure F.1)	:05-4-202 119
Table F.3 – Simplified calculated values of $I_{10/350}$ and $I_{8/20}$ for SPDs intended to be used in free-field PV power plants with multiple earthing and a meshed earthing system based on Figure F.3	121
Table H.1 – Flashes near the structure: induced voltage per square metre q as a function of LPL	126
Table H.2 – Values of k_{C}	127
Table H.3 – Values of k_{S1} and k_{S2} for some copper shields	127

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PROTECTION AGAINST LIGHTNING –

Part 4: Electrical and electronic systems within structures

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
 - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
 - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
 - 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 62305-4 has been prepared by IEC technical committee 81: Lightning protection. It is an International Standard.

This third edition cancels and replaces the second edition published in 2010. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) addition of new informative Annex E and Annex F on the determination of current sharing using modelling and current sharing in PV installations respectively;
- b) addition of a new informative Annex G on methods of testing of system level behaviour;
- c) addition of a new informative Annex H on induced voltages in SPD-protected installations.

The text of this International Standard is based on the following documents:

Draft	Report on voting
81/733/FDIS	81/752/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 62305 series, published under the general title *Protection against lightning*, can be found on the IEC website.

The following differing practices of a less permanent nature exist in the countries indicated below.

- 1) Subclause 5.6: In Japan, the minimum values of the cross-section are reduced from:
 - 16 mm² to 14 mm² for copper and 25 mm² to 22 mm² for aluminium, for bonding conductors connecting different bonding bars and conductors connecting the bars to the earth-termination system;
 - 6 mm² to 5 mm² for copper, 10 mm² to 8 mm² for aluminium and 16 mm² to 14 mm² for steel, for bonding conductors connecting internal metal installations to the bonding bars;
 - 16 mm² to 14 mm², 6 mm² to 5 mm² and 2,5 mm² to 2 mm² for copper, for earthing conductors to the SPD, conductors connecting SPDs and overcurrent protective

https://stand devices to live conductors.ds/iec/fi947301-2550-4bd6-a86d-l4fd88f3a21b/iec-62305-4-2024

 Subclause E.3.2.3: In South Africa SANS 10142-1:2020, Clause 6.1.6 [1]¹ states that 'The neutral conductor shall not be connected direct to earth or to the earth continuity conductor on the load side of the point of control'.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

¹ Numbers in square brackets refer to the Bibliography.

INTRODUCTION

Lightning as a source of harm is a very high energy phenomenon. Lightning flashes release many hundreds of mega-joules of energy. When compared with the milli-joules of energy that can be enough to cause damage to sensitive electronic equipment in electrical and electronic systems within a structure, additional protection measures will be necessary to protect some of this equipment.

The need for this International Standard has arisen due to the increasing cost of failures of electrical and electronic systems, caused by electromagnetic effects of lightning. Of importance are electronic systems used in data processing and storage as well as process control and safety for plants of considerable capital cost, size and complexity (for which plant outages are very undesirable for cost and safety reasons).

Lightning can cause different types of damage in a structure, as defined in IEC 62305-1.

IEC 62305-3 deals with the protection measures to reduce the risk of physical damage and life hazard but does not cover the protection of electrical and electronic systems.

This part of IEC 62305 therefore provides information on protection measures to reduce the risk of permanent failures of electrical and electronic systems within structures.

Permanent failure of electrical and electronic systems can be caused by the lightning electromagnetic impulse (LEMP) via:

- conducted and induced surges transmitted to equipment via connecting wiring;
- the effects of radiated electromagnetic fields directly into equipment itself.

Surges to the structure can originate from sources external to the structure or from within the structure itself:

surges which originate externally from the structure are created by lightning flashes
 striking incoming lines or the nearby ground, and are transmitted to electrical and electronic systems within the structure via these lines;

 surges which originate internally within the structure are created by lightning flashes striking the structure itself or the nearby ground.

NOTE 1 Surges can also originate internally within the structure, from switching effects, e.g. switching of inductive loads, tripping of circuit breakers, blowing of fuses.

NOTE 2 Further information about the protection against switching overvoltages created within structures can be found in IEC 60364-4-43 [2], IEC 60364-5-53 and IEC 61643-12.

Coupling can arise from different mechanisms, namely:

- resistive coupling (e.g. the earth impedance of the earth-termination system or the cable shield resistance);
- magnetic field coupling (e.g. caused by wiring loops in the electrical and electronic system or by inductance of bonding conductors);
- electric field coupling (e.g. caused by rod antenna reception).

NOTE 3 The effects of electric field coupling are generally very small when compared to the magnetic field coupling and can be disregarded.

Radiated electromagnetic fields can be generated via

- the direct lightning current flowing in the lightning channel;
- the partial lightning current flowing in conductors (e.g. in the down conductors of an external LPS, or its natural components, in accordance with IEC 62305-3 or in an external spatial shield in accordance with this document).

PROTECTION AGAINST LIGHTNING –

Part 4: Electrical and electronic systems within structures

1 Scope

This part of IEC 62305 provides requirements for the design, installation, inspection, maintenance, and testing of surge protection measures (SPM) for electrical and electronic systems to reduce the risk of permanent failures due to lightning electromagnetic impulse (LEMP) within a structure.

This document does not cover protection against electromagnetic interference due to lightning, which can cause malfunctioning of internal systems. However, the information reported in Annex A can also be used to evaluate such disturbances. Protection measures against electromagnetic interference are covered in IEC 60364-4-44 [3] and in the IEC 61000 series [4].

This document provides guidelines for cooperation between the designer of the electrical and electronic system and the designer of the protection measures, in order to achieve optimum protection effectiveness.

Teh Standards

This document does not deal with detailed design of the electrical and electronic systems themselves.

2 Normative references ocument Preview

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60364-5-53:2019, Low-voltage electrical installations – Part 5-53: Selection and erection of electrical equipment – Devices for protection for safety, isolation, switching, control and monitoring

IEC 60664-1, Insulation coordination for equipment within low-voltage systems – Part 1: *Principles, requirements, and tests*

IEC 61000-4-5, *Electromagnetic compatibility (EMC) – Part 4-5: Testing and measurement techniques – Surge immunity test*

IEC 61000-4-9, Electromagnetic compatibility (EMC) – Part 4-9: Testing and measurement techniques – Impulse magnetic field immunity test

IEC 61000-4-10, *Electromagnetic compatibility (EMC) – Part 4-10: Testing and measurement techniques – Damped oscillatory magnetic field immunity test*

IEC 61643-11:2011, Low-voltage surge protective devices– Part 11: Surge protective devices connected to low-voltage power systems – Requirements and test methods

IEC 61643-12:2020, Low-voltage surge protective devices – Part 12: Surge protective devices connected to low-voltage power systems – Selection and application principles

IEC 61643-21, Low-voltage surge protective devices – Part 21: Surge protective devices connected to telecommunications and signalling networks – Performance requirements and testing methods

- 12 -

IEC 61643-22, Low-voltage surge protective devices – Part 22: Surge protective devices connected to telecommunications and signalling networks – Selection and application principles

IEC 61643-31, Low-voltage surge protective devices – Part 31: Requirements and test methods for SPDs for photovoltaic installations

IEC 61643-32:2017, Low-voltage surge protective devices – Part 32: Surge protective devices connected to the d.c. side of photovoltaic installations – Selection and application principles

IEC 62305-1:2024, Protection against lightning – Part 1: General principles

IEC 62305-2:2024, Protection against lightning – Part 2: Risk management

IEC 62305-3:2024, Protection against lightning – Part 3: Physical damage to structures and life hazard

IEC 62561 (all parts), Lightning protection system components (LPSC)

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 62305-1, IEC 62305-2 and IEC 62305-3 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

https • st IEC Electropedia: available at https://www.electropedia.org/ 6d-141d88f3a21b/iec-62305-4-2024

• ISO Online browsing platform: available at https://www.iso.org/obp

3.1

electrical system

system incorporating low-voltage power supply components

3.2

electronic system

system incorporating sensitive electronic components such as telecommunication equipment, computer, control and instrumentation systems, radio systems, power electronic installations

3.3

internal systems

electrical and electronic systems of a structure

Note 1 to entry: Internal systems may for example be located on the roof of the structure provided they are connected internally to the structure.

3.4 lightning protection system

LPS

complete system used to reduce physical damage due to lightning flashes to a structure

Note 1 to entry: The LPS consists of both external and internal lightning protection systems but not measures taken to protect internal systems against the effects of LEMP.