

# **IEC TR 63017**

Edition 1.0 2015-12

# TECHNICAL REPORT



# Flexible printed circuit boards (FPCBs) R Method of compensation of impedance variations (standards.iteh.ai)

<u>IEC TR 63017:2015</u> https://standards.iteh.ai/catalog/standards/sist/e01284db-9c02-47b7-ac20-355af4d70688/iec-tr-63017-2015





### THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2015 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

| IEC Central Office | Tel.: +41 22 919 02 11 |
|--------------------|------------------------|
| 3, rue de Varembé  | Fax: +41 22 919 03 00  |
| CH-1211 Geneva 20  | info@iec.ch            |
| Switzerland        | www.iec.ch             |

### About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

### About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

### IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

### IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a variety of criteria (reference number) text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

### IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing 20 000 terms and definitions in English and French, with equivalent terms in 15 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

### IEC Glossary - std.iec.ch/glossary

65 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

### shed IEC Customer Service Centre - webstore.iec.ch/csc

details all new publications released. Available online and 630 if you wish to give us your feedback on this publication or also once a month by emailtps://standards.iteh.ai/catalog/standardneed/further assistance, please contact the Customer Service 355af4d70688/iec-Centrel 920@jec.ch.



Edition 1.0 2015-12

# TECHNICAL REPORT



# Flexible printed circuit boards (FPCBs) R Method of compensation of impedance variations (standards.iteh.ai)

IEC TR 63017:2015 https://standards.iteh.ai/catalog/standards/sist/e01284db-9c02-47b7-ac20-355af4d70688/iec-tr-63017-2015

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 31.180

ISBN 978-2-8322-3083-1

Warning! Make sure that you obtained this publication from an authorized distributor.

## CONTENTS

| FOREWORD                                                                               | 3      |  |
|----------------------------------------------------------------------------------------|--------|--|
| 1 Scope                                                                                | 5      |  |
| 2 Normative references                                                                 | 5      |  |
| 3 Apparatus                                                                            | 5      |  |
| 3.1 Time domain reflectometry                                                          | 5      |  |
| 3.2 Block diagram for impedance measuring                                              | 5      |  |
| 4 Test specimen                                                                        | 6      |  |
| 4.1 General                                                                            | 6      |  |
| 4.2 Structure                                                                          | 6      |  |
| 4.3 Lest method                                                                        | /      |  |
| 4.4 Calculation                                                                        | ٥<br>۵ |  |
| Appex A (normative) Block diagram for impedance measuring with TDP                     | 9      |  |
| Annex R (informative) Theoretical background                                           | 10     |  |
| Annex B (informative) Theoretical background                                           | 11     |  |
| Annex C (informative) Example of an impedance measurement with TDR                     | 12     |  |
| Annex D (informative) That contact effect                                              | 10     |  |
| E 1 Shield 1 EDCP                                                                      | 14     |  |
| E 2 Shield 2 EPCB (standards.iteh.ai)                                                  | 14     |  |
| Bibliography                                                                           | 16     |  |
| IEC TR 63017:2015                                                                      |        |  |
| Figure 1 – TDR test system                                                             | 5      |  |
| Figure 2 – Two types of impedance structure of FPCB                                    | 6      |  |
| Figure 3 – Schematic diagram of a test specimen                                        |        |  |
| Figure 4 – Impedance value of two type EPCB (bare and shield) $8$                      |        |  |
| Figure 5 – Compensation value ( $\Lambda I$ ) of the Cu line width for the shield EPCB |        |  |
| Figure A 1 – TDR test system according to IPC 2141a-9-1 $10$                           |        |  |
| Figure A 2 – TDR test system according to Agilent TDR 54754A                           | 10     |  |
| Figure B.1 – Two types of impedance structure of EPCBs                                 | 11     |  |
| Figure B.2 Comparison of the impedance value of a bare EPCR versus a shield            |        |  |
| FPCB                                                                                   | 11     |  |
| Figure C.1 – Photographic view of the impedance measurement with TDR                   | 12     |  |
| Figure D.1 – Effect of impedance variation by hand contact for bare FPCB               | 13     |  |
| Figure E.1 – Measurement result of the test specimen for shield 1 FPCB                 | 14     |  |
| Figure E.2 – Measurement result of the test specimen for shield 2 FPCB                 |        |  |
|                                                                                        |        |  |
| Table E.1 – Cross-section of test specimen with using shield 1 FPCB                    | 14     |  |
| Table E.2 – Cross-section of test specimen with using shield 2 FPCB                    | 15     |  |
|                                                                                        |        |  |

### INTERNATIONAL ELECTROTECHNICAL COMMISSION

## FLEXIBLE PRINTED CIRCUIT BOARDS (FPCBs) – METHOD OF COMPENSATION OF IMPEDANCE VARIATIONS

### FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity, independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies sist/c01284db-9c02-47b7-ac20-
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC TR 63017, which is a technical report, has been prepared by IEC technical committee 91: Electronics assembly technology.

The text of this technical report is based on the following documents:

| Enquiry draft | Report on voting |
|---------------|------------------|
| 91/1283/DTR   | 91/1308/RVC      |

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

## iTeh STANDARD PREVIEW (standards.iteh.ai)

IEC TR 63017:2015 https://standards.iteh.ai/catalog/standards/sist/e01284db-9c02-47b7-ac20-355af4d70688/iec-tr-63017-2015

## FLEXIBLE PRINTED CIRCUIT BOARDS (FPCBs) -METHOD OF COMPENSATION OF IMPEDANCE VARIATIONS

#### 1 Scope

This Technical Report specifies a compensation method of Cu linewidth according to impeadance reduction by using noise suppression materials (hereafter referred to as NSMs) for FPCBs.

This Technical Report presents an optimum result for maintaining a designated performance of FPCBs by using NSMs. It also indicates a measuring method for an impedance variation of FPCBs using NSMs with the prevailing TDR (time domain reflectometry) method. This method is resticted to measuring only the variation of an impedance value in accordance with the variation of the Cu linewidth by using NSMs for FPCBs. This report, however, neither determines nor indicates the structure or material of FPCBs.

### 2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. (standards.iteh.ai)

IPC 2141A Design Guide for High-Speed Controlled Impedance Circuits Boards http://www.ipc.org/ https://standards.iteh.ai/catalog/standards/sist/e01284db-9c02-47b7-ac20-

355af4d70688/jec-tr-63017-2015

### 3 Apparatus

### 3.1 Time domain reflectometry

Time domain reflectometry (hereafter referred to as TDR) is utilized to identify the impedance data at the specific frequency range of FPCBs.

#### 3.2 Block diagram for impedance measuring

Figure 1 gives one example of a TDR setup.



Figure 1 – TDR test system

NOTE A guideline for TDR is provided in Annex A.

### 4 Test specimen

### 4.1 General

FPCBs using NSMs should reduce the effect of electro-magnetic interference. However, without appropriate application of NSMs, it may cause poor signal quality on the FPCB due to the impedance variation of Cu circuit lines.

A major factor of impedance variation using NSMs is due to the structure variation of FPCBs, as shown in Figure 2.



# Figure 2a - <Micro strip line structure without ARDFigure 2b - <Strip line structure with NSMs>

NOTE A guideline for the theoretical background of impedance variation is provided in Annex B.

### Figure 2 – Two types of impedance structure of FPCB

https://standards.iteh.ai/catalog/standards/sist/e01284db-9c02-47b7-ac20-355af4d70688/iec-tr-63017-2015

### 4.2 Structure

Test specimens shall be designed by two structures, i.e. with and without using NSMs in one FPCB board. Test specimens shall be divided into two halves with one board (consisting of the two parts of one bare FPCB and one shield FPCB) for equitable estimation. This structure has the merit of uniformly measuring at once a bare and a shield FPCB under the same condition. One FPCB without using NSMs has a structure of a micro-strip line. This type is called bare FPCB. Another FPCB using NSMs has a structure of a strip line. This type is called shield FPCB (see Figure 3).

A Cu line is formed with a linear distance direction, because the variation of the shield effect is very weak for a curved line.

Generally, the number of Cu patterns of the test specimen can be over the 5 (for example LW1 ~ LW5) for verification of the characteristic impedance ( $Z_0$ ). But the number and width of the Cu line shall vary in accordance with the supplier's activity.



Figure 3 – Schematic diagram of a test specimen

Size, spacing and number of via holes for test specimens shall not be limited, but sufficiently represented. Especially, via holes offer an important role to contact the NSMs with the ground plan of shield FPCB. The number of via holes shall be as agreed between user and supplier (hereafter referred to as AABUS).

The length of the test specimen shall be over 5 cm in order to obtain stable values from the measuring equipment. Each end of the test specimen should consist of SMA (subminiature A) connectors. For discernment of a Cu line-width, write each – number to the bare – end of the test specimen near the SMA connector.

The decision of width and thickness of a test specimen shall depend on to the pitch or the number of the Cu line or according to the requirements of the user. However, generally the structure of the test coupon shall be AABUS.

An impedance value for FPCBs shall be changed with respect to the Cu pattern width, layer structure, thickness and materials. The structure and materials of the test specimens is required depending on the user's sample specifications. But the variation of these test specimens is not important, because the user of FPCBs shall check only the impedance variation effect by using NSMs for the user's sample specification.

### 4.3 Test method

In order to measure the proper impedance value for the test specimen, the following procedures shall be empoyed.

- a) Impedance values of the test specimen shall be measured by employing TDR, test specimen and coaxial cable according to IPC 2141A.
- b) Measurement conditions shall be set by means of the TDR, such as dielectric constant, measurement point, rising time, pulse width, etc.
- c) The impedance value of the test specimen shall be measured according to the Cu line width for bare FPCB.
- d) The measurement of the above process according to Cu line width shall be repeated for the shield FPCB (see Figure 4).

NOTE The guideline of the test method is provided in Annex C.

e) The measuring value of the two types FPCBs (bare and shield) shall be presented in form of a diagram (line chart using excel).



Figure 4 – Impedance value of two type FPCB (bare and shield)

f) In order to obtain the correct data, a direct hand contact to the specimen should be avoided as the electrostatic capacity varies.

NOTE The effect of hand contact with the test specimen is provided in Annex D.

### 4.4 Calculation

The following applies to the calculation of the compensation values.

- a) Generally, a demand of the characteristic impedance value ( $Z_0$ ) is 50  $\Omega$  for a single Cu line, 100  $\Omega$  for a differential Cu line.
- b) In the case of a single Cu line, draw a straight base line corresponding to a characteristic impedance value (50  $\Omega$ ) on a excel chart (see Figure 5).
- c) Find a cross point of the Cu line width for a characteristic impedance value (50  $\Omega$ ) with each curve of bare and shield FPCB.
- d) Especially, check the Cu line width in the point to meet the 50  $\Omega$  impedance value from the shield FPCB curve.
- e) Calculate a difference ( $\Delta L$ ) of the Cu line width between two points.
- f) Reduce  $\Delta L$  by degrees to the Cu line width of the bare FPCB.
- g) Show this value in a new design of a Cu line width for the bare FPCB.

NOTE A detailed test result is provided in Annex E.



-9-

Figure 5 – Compensation value ( $\Delta L$ ) of the Cu line width for the shield FPCB

## 5 Report

In case that the specification of the measurement is contained in the report, it shall be provided with the details as specified below.

- a) Type of TDR equipment STANDARD PREVIEW
- b) Type of shied materials (structure, thickness, maker).
- c) Type of base materials (structure, maker).
- d) The range of Cu line width. <u>IEC TR 63017:2015</u>
- e) The range of impedance (Z) variation according to the Cu-line-width of the test specimen.
- f) Impedance value data according to the Cu line width.