
INTERNATIONAL
STANDARD

ISO/lEC
13814

First edition
1998-07-01

Information technology - Programming
languages - Generic package of complex
elementary functions for Ada

Technologies de /‘information - Langages de programmation -
Paquetage g&Grique de fonctions Mmentaires complexes pour Ada

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13814:1998
https://standards.iteh.ai/catalog/standards/sist/a507319c-d8f6-44a8-8ba1-

d8895d763d20/iso-iec-13814-1998

ISO/IEC 13814:1998(E)

Contents Page

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Scope.. ..

Normative references

Subprograms provided.

Instantiations

Implementations

Exceptions ..

Arguments outside the range of safe numbers.

Method of specification of functions.

Branch cut and domain definitions

Range definitions

Accuracy requirements

Overflow ..

Underflow ...

Specifications of the functions
14.1 SQRT - Square root.
14.2 LOG - Natural logarithm
14.3 EXP - Exponential function, complex argument
14.4 EXP - Exponential function, imaginary argument.

1

1

1

2

3

4

5

5

5

5

6

7

8

9
9

10
10
11

@ ISO/IEC 1998
All rights reserved. Unless otherwise specified, no part of this publication may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office l Case postale 56 l CH-1211 Geneve 20 l Switzerland

Printed in Switzerland

ii

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13814:1998
https://standards.iteh.ai/catalog/standards/sist/a507319c-d8f6-44a8-8ba1-

d8895d763d20/iso-iec-13814-1998

@ ISO/IEC ISO/IEC 13814:1998(E)

14.5 "**" - Exponentiation operator, complex to complex
power arguments 12

14.6 @fi**lI - Exponentiation operator, complex to real power
arguments 12

14.7 @'**c" - Exponentiation operator, real to complex power
arguments 13

14.8 SIN - Trigonometric sine function 14
14.9 cos - Trigonometric cosine function 15
14.10 TAN - Trigonometric tangent function 16
14.11 COT - Trigonometric cotangent function 16
14.12 ARCSIN- Inverse trigonometric sine function 17
14.13 ARCCOS- Inverse trigonometric cosine function 18
14.14 ARCTAN - Inverse trigonometric tangent function 19
14.15 ARCCOT- Inverse trigonometric cotangent function 19
14.16 SINH - Hyperbolic sine function 20
14.17 COSH - Hyperbolic cosine function 21
14.18 TANH- Hyperbolic tangent function 22
14.19 COTH- Hyperbolic cotangent function 23
14.20 ARCSINH - Inverse hyperbolic sine function 23
14.21 ARCCOSH- Inverse hyperbolic cosine function 24
14.22 ARCTANH - Inverse hyperbolic tangent function 25
14.23 ARCCOTH- Inverse hyperbolic cotangent function 25

Annexes

A

B

C

Ada specification for GENERIC-COMPLEX-ELEMENTARY-FUNCTIONS 27

Rationale ... 29
B.1 Introduction and motivation. 29
B.2 History 29
B.3 Packaging considerations 29
B.4 Choice of functions 30
B.5 Handling of exceptions 30
B.6 Matters of style 32
B.7 Method of expressing accuracy requirements 32

Bibliography. 35

Figures

B.l Result rectangle for a subprogram satisfying a maximum relative
component error requirement . 33

B.2 Result rectangle for a subprogram satisfying a maximum relative
box error requirement . 33

B.3 Result circle for a subprogram satisfying a maximum relative vec-
tor error requirement . 34

. . .
111

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13814:1998
https://standards.iteh.ai/catalog/standards/sist/a507319c-d8f6-44a8-8ba1-

d8895d763d20/iso-iec-13814-1998

ISO/IEC 13814:1998(E) @ ISO/IEC

Foreword

IS0 (the International Organization for Standardization) and IEC (the In-
ternational Electrotechnical Commission) form the specialized system for
worldwide standardization. National bodies that are members of IS0 or IEC
participate in the development of International Standards through technical
committees established by the respective organization to deal with particular
fields of technical activity. IS0 and IEC technical committees collaborate
in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with IS0 and IEC, also take part in the
work.

In the field of information technology, IS0 and IEC have established a
joint technical committee, ISO/IEC JTC 1. Draft International Standards
adopted by the joint technical committee are circulated to national bodies
for voting. Publication as an International Standard requires approval by at
least 75% of the national bodies casting a vote.

International Standard ISO/IEC 13814 was prepared by Joint Technical
Committee ISO/IEC JTC 1, Inf ormation technology, Subcommittee 22, Pro-
gramming languages, their environments and system software interfaces.

Annex A forms an integral part of this International Standard. Annexes B
and C are for information only.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13814:1998
https://standards.iteh.ai/catalog/standards/sist/a507319c-d8f6-44a8-8ba1-

d8895d763d20/iso-iec-13814-1998

@ ISO/IEC ISO/IEC 13814:1998(E)

Introduction

The generic package described here is intended to provide the basic complex
mathematical routines from which portable, reusable applications can be
built. This International Standard serves a broad class of applications with
reasonable ease of use, while demanding implementations that are of high
quality, capable of validation, and also practical given the state of the art.

The specification included in this International Standard is presented as a
compilable Ada specification in Annex A, with explanatory text in numbered
clauses in the main body of text. The explanatory text is normative, with
the exception of the following items:

notes (under the heading Notes associated with some of the functions);
and

- notes (labeled as such) presented at the end of any numbered clause.

The word “may” as used in this International Standard consistently means
“is allowed to” (or “are allowed to”). It is used only to express permission,
as in the commonly occurring phrase “an implementation may”; other words
(such as “can ,” “could” or “might”) are used to express ability, possibility,
capacity or consequentiality.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13814:1998
https://standards.iteh.ai/catalog/standards/sist/a507319c-d8f6-44a8-8ba1-

d8895d763d20/iso-iec-13814-1998

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13814:1998
https://standards.iteh.ai/catalog/standards/sist/a507319c-d8f6-44a8-8ba1-

d8895d763d20/iso-iec-13814-1998

INTERNATIONAL STANDARD 0 ISO/IEC ISO/IEC 13814:1998(E)

Informat ion technology -
Programming languages -
Generic package of complex elementary functions for Ada

1 Scope

This International Standard defines the specification of a generic package of complex elementary functions called
GENERIC-COMPLEX-ELEMENTARY-FUNCTIONS. It does not provide the body of the package.

This International Standard specifies certain basic complex mathematical routines from which portable, reusable
applications can be built. This International St)andard serves a broad class of applications with reasonable ease of use,
while demanding implementations that are of high quality, capable of validation, and also practical given the state of
the art.

This International Standard is applicable to programming environments conforming to ISO/IEC 8652:1987 and is
relevant to the revised standard ISO/IEC 8652:1995.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this Interna-
tional Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision,
and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying
the most recent editions of the standards indicated below. Members of IEC and IS0 maintain registers of currently
valid International Standards.

ISO/IEC 8652, Information technology - Programming languages - Ada.

ISO/IEC 11430, Information technology - Programming languages - Generic package of elementary functions for

Ada.

ISO/IEC 11729, Information technology - Programming languages - Generic package of primitive functions for Ada.

ISO/IEC 13813, Information technology - Programming languages - Generic packages of real and complex type
declarations and basic operations for Ada (including vector and matrix types).

3 Subprograms provided

The following twenty mathematical functions are provided:

SQRT LOG EXP t'**"
SIN cos TAN COT
ARCSIN ARCCOS ARCTAN ARCCOT
SINH COSH TANH COTH
ARCSINH ARCCOSH ARCTANH ARCCOTH

These are the square root (SQRT), logarithm (LOG) and exponential (EXP) function and the exponentiation operator
(**); the trigonometric functions for sine (SIN), cosine (COS), tangent (TAN) and cotangent (COT) and their inverses

1

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13814:1998
https://standards.iteh.ai/catalog/standards/sist/a507319c-d8f6-44a8-8ba1-

d8895d763d20/iso-iec-13814-1998

ISO/IEC 13814:1998(E) @ ISO/IEC

(ARCSIN, ARCCOS, ARCTAN and ARCCOT); and the hyperbolic functions for sine (SINH), cosine (COSH), tangent (TANH),
and cotangent (COT@ together with their inverses (ARCSINH, ARCCOSH, ARCTANH, and ARCCOTH). These are the same
functions by the same names that are in the package GENERIC-ELEMENTARY-FUNCTIONS definied in ISO/IEC 11430.

Several variations are provided for the exponentiation operator and the exponential function. All functions have one or
more formal parameters oftype COMPLEX or IMAGINARY and return a value oftype COMPLEX. COMPLEX and IMAGINARY
are generic formal parameters of the generic package GENERIC-COMPLEX-ELEMENTARY-FUNCTIONS.

4 Instantiations

This International Standard describes a generic package, GENERIC-COMPLEX-ELEMENTARY-FUNCTIONS, which the user
must instantiate to obtain a computational capability. The generic package has three required generic formal parame-
ters and many generic formal subprograms with defaults. At instantiation, the user must specify, as the generic actual
parameters to be associated with REAL, COMPLEX and IMAGINARY respectively,

a> a floating-point type,

b) a private composite type containing real and imaginary components of the type specified by a), (Within this
International Standard, the real and imaginary components of the composite type are referred to simply as compo-
nents.)

4 a private type of the same base type as a) that is interpreted as the pure imaginary form of b).

Types suitable for b) and c) are exported by the package obtained by instantiating, with the type specified by a) as
its generic actual parameter, the generic package GENERIC-COMPLEX-TYPES defined in ISO/IEC 13813. (Instantiation
of the package GENERIC-COMPLEX-TYPES is not a prerequisite for using GENERIC-COMPLEX-ELEMENTARY-FUNCTIONS;
it is merely an option that the user might find convenient to pursue.) In addition the user may specify the many
subprogram generic formal parameters as generic actual parameters, or for convenience, all these subprograms are
exported by the instantiation of GENERIC-COMPLEX-TYPES described above.

Depending on the implementation, the user may or may not be allowed to specify a generic actual type having a range
constraint for the first generic actual parameter (see clause 5). The generic actual parameters for the subprograms
can be omitted if functions having names and profiles matching those of the corresponding generic formal parameters
are visible at the place of the instantiation. An instantiation of GENERIC-COMPLEX-TYPES, as described above, can
optionally be used to obtain subprograms that satisfy these requirements.

In addition to the body of the generic package itself, implementers may provide (non-generic) library packages that can
be used just like instantiations of the generic package in which the first generic actual parameter is a predefined floating-
point type and the remainder are related to the first in appropriate ways. In particular, the name of a package serving
as a replacement for an instantiation of GENERIC-COMPLEX-ELEMENTARY-FUNCTIONS for the predefined type FLOAT
shall be COMPLEX-ELEMENTARY-FUNCTIONS with REAL replaced by FLOAT in the profiles of the functions that it exports.
Similarly, the names of packages serving as replacements for instantiations of GENERIC-COMPLEX-ELEMENTARY-FUNC-
TIONS for the predefined types LONG-FLOAT, SHORT-FLOAT, etc., shall be LONG-COMPLEX-ELEMENTARY-FUNCTIONS,
SHORT_COMPLEX,ELEMENTARY_FUNCTIONS, etc., respectively and REAL shall be systematically replaced in the profiles
of the functions that they export by LONG-FLOAT, SHORT-FLOAT, etc. Implementers are responsible for ensuring that
a composite type called COMPLEX containing a pair of components of types FLOAT, LONG-FLOAT, SHORT-FLOAT, etc.,
respectively, are available. For example, each of the non-generic library packages could be prefixed by an appropriate
context clause, such as:

with COMPLEX-TYPES;
package COMPLEX-ELEMENTARY-FUNCTIONS is . . .

The packages COMPLEX-TYPES, LONG-COMPLEX-TYPES, etc., described in ISO/IEC 13813, are not a prerequisite for
implementation, yet are an option the implementer might find convenient to pursue.

2

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13814:1998
https://standards.iteh.ai/catalog/standards/sist/a507319c-d8f6-44a8-8ba1-

d8895d763d20/iso-iec-13814-1998

@ ISO/IEC ISO/IEC 13814:1998(E)

5 Implementations

Portable implementations of GENERIC-COMPLEX-ELEMENTARY-FUNCTIONS are strongly encouraged. However, implemen-
tations are not required to be portable. In particular, an implementation of this International Standard in Ada may use
pragma INTERFACE or other pragmas, unchecked conversion, machine-code insertions or other machine-dependent
techniques as desired. On the other hand, to the extent that generic packages (e.g. GENERIC-ELEMENTARY-FUNCTIONS
defined in ISO/IEC 11430 and GENERIC-PRIMITIVE-FUNCTIONS defined in ISO/TEC 11729) become widely ‘available,
portable implementations of GENERIC-COMPLEX-ELEMENTARY-FUNCTIONS should not be particularly difficult to con-
struct In particular, it is possible to achieve the accuracy required by this International Standard, when specified, by
appropriate use ofthe package GENERIC-ELEMENTARY-FUNCTIONS.

An implementation is allowed to limit the precision it supports (by stating an assumed maximum value for
SYSTEM. MAX-DIGITS), since portable implementations would not, in general, be possible otherwise. An implemen-
tation is also allowed to make other reasonable assumptions about the environment in which it is to be used, but
only when necessary in order to match algorithms to hardware characteristics in an economical manner. All such
limits and assumptions shall be clearly documented. By convention, an implementation of GENERIC-COMPLEX-ELE-
MENTARY-FUNCTIONS is said not to conform to this International Standard in any environment in which its limits or
assumptions are not satisfied, and this International Standard does not define its behavior in that environment. In
effect, this convention delimits the portability of implementations.

An implementation is allowed to impose a restriction that the generic actual parameter associated with REAL shall
not have a range constraint that reduces the range of allowable values. If it does impose this restriction, then the
restriction shall be documented, and the effects of violating the restriction shall be one of the following:

a) Compilation of a unit containing an instantiation of GENERIC-COMPLEX-ELEMENTARY-FUNCTIONS is rejected.

b) CONSTRAINT-ERROR or PROGRAM-ERROR is raised during the elaboration of an instantiation of GENERIC-COM-
PLEX-ELEMENTARY-FUNCTIONS.

Conversely, if an implementation does not impose the restriction, then it must not allow such a range constraint,
when included with the user’s actual type, to interfere with the internal computations of the functions; that is, if the
components of the argument and the result are within the range of the type, then the implementation shall return the
result and shall not raise an exception (such as CONSTRAINT-ERROR).

Any of the restrictions discussed above may in fact be inherited from implementations of the packages GENERIC-EL-
EMENTARY-FUNCTIONS defined in ISO/IEC 11430, GENERIC~PRIMITIVEJ'UNCTIONS defined in ISO/IEC 11729 and
GENERIC-COMPLEX-TYPES defined in ISO/IEC 13813, if used. The dependence of an implementation on such inherited
restrictions should be documented.

An implementation shall function properly in a tasking environment. Apart from the obvious restriction that an
implementation of GENERIC-COMPLEX-ELEMENTARY-FUNCTIONS shall avoid declaring variables that are global to the
functions, no special constraints are imposed on implementations. Nothing in this International Standard requires the
use of such global variables.

Some hardware and their accompanying Ada implementations have the capability of representing and discriminating
between positively and negatively signed zeros as a means, e.g., of preserving the sign of an infinitesimal quantity
that has underflowed to zero. This International Standard allows implementations of GENERIC-COMPLEX-ELEMENTA-
RY-FUNCTIONS to exploit that capability, when available, so as to exhibit continuity in the results of some functions
as certain limits are approached. At the same time, it accommodates implementations in which that capability is
unavailable. Because a definition of what comprises the capability of representing and distinguishing signed zeros is
beyond the scope of this International Standard, implementations are allowed the freedom not to exploit the capability,
even when available. An implementation shall exercise its choice consistently, either exploiting signed-zero behavior
everywhere or nowhere in this package. The signs of zero results prescribed by this International Standard apply only
to implementations that exploit signed zeros; an implementation that does not exploit signed zeros may give any sign
to a zero result. In addition an implementation shall document its behavior with respect to signed zeros. In this
International Standard, unless otherwise qualified, zero means any of (410.0, 310.0) and one means either of (I. 0,
*o.o).

3

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13814:1998
https://standards.iteh.ai/catalog/standards/sist/a507319c-d8f6-44a8-8ba1-

d8895d763d20/iso-iec-13814-1998

ISO/IEC 13814:1998(E) @ ISO/IEC

6 Exceptions

The ARGUMENT-ERROR exception is raised by a function in the generic package when an argument of the function violates
one or more of the conditions given in the function’s domain definition (see clause 9). Note that these conditions are
related only to the mathematical definition of the function and are therefore implementation independent.

The ARGUMENT-ERRORexception is declared as a renaming of the exception of the same name declared in the package EL-
EMENTARY FUNCTIONS EXCEPTIONS defined in ISO/IEC 11430. This exception distinguishes neither between different
kinds of argument errors, nor between different functions, nor between different instantiations of GENERIC-COMPLEX-EL-
EMENTARY-FUNCTIONS, nor between instantiations of GENERIC-COMPLEX-ELEMENTARY-FUNCTIONS and those of GENER-
IC-ELEMENTARY-FUNCTIONS.

Besides ARGUMENT-ERROR, the only exceptions allowed during a call to a function in GENERIC-COMPLEX-ELEMENTA-
RY-FUNCTIONS are predefined exceptions, as follows:

a) Virtually any predefined exception is possible during the evaluation of an argument of a function in GENER-
IC-COMPLEX-ELEMENTARY-FUNCTIONS. For example, NUMERIC-ERROR, CONSTRAINT-ERROR or even PROGRAM-ERROR
could be raised if an argument has an undefined value; and CONSTRAINT-ERROR will be raised when the value of an
argument (or component of an argument) lies outside the range of the user’s generic actual type REAL. Additionally
STORAGE-ERROR could be raised, e.g. if insufficient storage is available to perform the call. All these exceptions are
raised before the body of the function is entered and therefore have no bearing on implementations of GENERIC-COM-
PLEX-ELEMENTARY-FUNCTIONS.

b) Also, CONSTRAINT-ERROR will be raised when a function in GENERIC-COMPLEX-ELEMENTARY-FUNCTIONS attempts
to construct a complex return value with a component outside the range of the user’s generic actual type associated
with REAL. The exception raised for this reason shall be propagated to the caller of the function.

c) Whenever the arguments of a function are such that a component of a result permitted by the accuracy require-
ments would exceed REAL’ SAFE-LARGE in absolute value, as formalized below in clause 12, an implementation may
raise, and shall then propagate to the caller, the exception specified by Ada for signaling overflow.

d) Whenever the arguments of a function are such that the corresponding mathematical function is infinite (i.e.,
has an infinite component), an implementation shall raise and propagate to the caller the exception specified by
Ada for signaling division by zero.

e> Once execution of a function has begun, an implementation may propagate STORAGE-ERROR to the caller of the
function, but only to signal the unexpected exhaustion of storage. Similarly, once execution of a function has begun,
an implementation may propagate PROGRAM-ERROR to the caller of the function, but only to signal errors made by
the user of GENERIC_COMPLEX-ELEMENTARY-FUNCTIONS.

No exception is allowed during a call to a function in GENERIC-COMPLEX-ELEMENTARY-FUNCTIONS except those per-
mitted by the foregoing rules. In particular, for arguments for which all components of results satisfying the accuracy
requirements remain less than or equal to REAL’SAFE-LARGE in absolute value in both real and imaginary parts, a
function shall locally handle an overflow occurring during the computation of an intermediate result, if such an overflow
is possible, and shall not propagate an exception signaling that overflow to the caller of the function.

The only exceptions allowed during an instantiation of GENERIC-COMPLEX-ELEMENTARY-FUNCTIONS, including the ex-
ecution of the optional sequence of statements in the body of the instance, are CONSTRAINT-ERROR, STORAGE-ERROR
and PROGRAM-ERROR, and then only for the following reasons. The raising of CONSTRAINT-ERROR during instantiation
is only allowed when the implementation imposes the restriction that the generic actual type associated with REAL
shall not have a range constraint, and the user violates that restriction (it may, in fact, be an inescapable consequence
of the violation). The raising of PROGRAM-ERROR during instantiation is only allowed for the purpose of signaling errors
made by the user violating some restriction or limitation of the implementation. The raising of STORAGE-ERROR during
instantiation is only allowed for the purpose of signaling the exhaustion of storage.

NOTE - In ISO/IEC 8652:1995, the exception specified for signaling overflow is CONSTRAINT-ERROR.

4

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13814:1998
https://standards.iteh.ai/catalog/standards/sist/a507319c-d8f6-44a8-8ba1-

d8895d763d20/iso-iec-13814-1998

@ ISO/IEC ISO/IEC 13814:1998(E)

7 Arguments outside the range of safe numbers

The ISO/IEC 8652:198’7 fails to define the result safe interval of any basic or predefined operation of a real subtype
when the absolute value of one of its operands exceeds the largest safe number of the operand subtype. (The failure
to define a result in this case occurs because no safe interval is defined for the operand in question.) In order to
avoid imposing requirements that would, consequently, be more stringent than those of Ada itself, this International
Standard likewise does not define the result of a contained function when the absolute value of a component of one
of its arguments exceeds REAL' SAFE-LARGE. All of the accuracy requirements and other provisions of the following
clauses are understood to be implicitly qualified by the assumption that both components of function arguments are
less than or equal to REAL' SAFE-LARGE in absolute value.

8 Method of specification of functions

One of the functions has three overloaded forms. For each form of each function covered by this International Standard,
the function is specified by its parameter and result type profile, a defining equation, the applicable branch cuts, the
domain of its argument(s), its range, and the accuracy required of its implementation. The meaning of, and conventions
applicable to, these specifications are described below.

The specification of each function has a heading called Definition. This is meant to convey the required behavior of
the function. The definition is not necessarily an appropriate implementation for the function. The definition is one
of the mathematically correct definitions of the function but algebraic simplifications or transformations may not be
correct. Transformations may cause the sign of the result to be wrong or cause a gratuitous singularity. The definition
is based on exact computation whereas an implementation must take into account the accuracy requirements.

9 Branch cut and domain definitions

The specification of each function covered by this International Standard includes headings of Branch cut and Domain.
The branch cuts or slits are specified to warn the user of discontinuity in the function or one of its derivatives. Under
the heading Domain, a characterization of the argument values is given for which the function is mathematically
defined. The portion of the complex plane over which the function is defined is expressed by inequalities or other
conditions which the arguments must satisfy to be valid. The phrase “mathematically unbounded” in a domain
definition indicates that all representable values of the argument are valid, i.e., that the domain is the entire complex
plane. Whenever the arguments fail to satisfy all the conditions, the implementation shall raise ARGUMENT-ERROR. The
implementation shall not raise ARGUMENT-ERROR if all the domain conditions are satisfied.

Inability to deliver a result for valid arguments because the result overflows, for example, shall not raise ARGUMENT-ER-
ROR, but shall be treated in the same way that Ada defines for its predefined floating-point operations (see clause
12) .

10 Range definitions

The usual mathematical meaning of the “range” of a function is the set of values into which the function maps the
values in its domain. Many of the functions covered by this International Standard are mathematically multivalued,
in the sense that a given argument value can be mapped by the function into many different result values. By means
of range restrictions, this International Standard imposes a uniqueness requirement on the results of multivalued
functions, thereby reducing them to single-valued functions.

The range of each function is shown under the heading Range in the specifications. The range definition is expressed
by inequalities or other conditions that shall be satisfied by the components of the returned result. An implementation
shall not exceed a limit of a range component when that limit is a safe number of REAL (like 0.0 or 1.0). On the other
hand, when a range component limit is not a safe number of REAL (like 7r), an implementation is allowed to exceed
the range component limit, but it is not allowed to exceed the safe number of REAL next beyond the range component
limit in the direction away from the interior of the range component; this is in general the best that can be expected

5

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13814:1998
https://standards.iteh.ai/catalog/standards/sist/a507319c-d8f6-44a8-8ba1-

d8895d763d20/iso-iec-13814-1998

ISO/IEC m14:1w8(E) @ ISO/IEC

from a portable implementation. Effectively, therefore, range definitions have the added effect of imposing accuracy
requirements on implementations above and beyond those presented under the heading Accwucy in the specifications
(see clause 11).

The phrase “mathematically unbounded” in a range definition indicates that the range of values of the function is not
bounded by its mathematical definition.

11 Accuracy requirements

Because they are implemented on digital computers with only finite precision, the functions provided in this generic
package can, at best, only approximate the corresponding mathematically defined functions.

The accuracy requirements contained in this International Standard define the latitude that implementations are
allowed in approximating the intended precise mathematical result with floating-point computations. Accuracy re-
quirements of two kinds are stated under the heading Accuracy in the specifications. Additionally, range definitions
stated under the heading Range impose requirements that constrain the values implementations may yield, so the
range definitions are another source of accuracy requirements (the precise meaning of a range limit that is not a safe
number of REAL, as an accuracy requirement , is discussed above in clause
subject to all of the function’s applicable accuracy requirements, except in

10). Every result yielded by a function is
the one case described in clause 13, below.

In that
for the

case, the result will satisfy a small absolute error requirement in lieu of the other accuracy requirements defined
function.

The first kind of accuracy requirement used under the heading Accuracy in the specifications is a separate bound
on the relative error in the components of the computed value of the function, which shall hold (except as provided
by the rules in clauses 12 and 13) for all arguments satisfying the conditions in the domain definition, providing the
mathematical result is finite and nonzero. For some functions, the relative error bound is stated as a bound on the
“relative box error” in each component, while for others it is stated as a bound on the “relative component error” in
each component. For a given function f, having an exact result f(z), the relative box error in the components of a
computed result F(z) at the argument z is defined as

relative box error in real part of result
- I re(Jw) - re(f(4) I -

max(l re(f(4)L I im(fc4I)

relative box error in imaginary part of result

while the relative component error is defined as

relative component error in real part of result

- I ww) - 4f(z>> I -
I4f WI

relative component error in imaginary part of result

- I im(Fw - im(f (4 I -
I im(f W>l

providing the denominators are finite and nonzero. The relative box error in a component of the result is not defined
when the mathematical result is zero or either of its components are infinite.
component of the result is not defined when that component of the mathematical result is infinite or zero.

The relative component error in a

6

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13814:1998
https://standards.iteh.ai/catalog/standards/sist/a507319c-d8f6-44a8-8ba1-

d8895d763d20/iso-iec-13814-1998

@ ISO/IEC ISO/IEC 13814:1998(E)

The second kind of accuracy requirement used under the heading Accwucy in the specifications is a stipulation,
in the form of an equality, that the implementation shall deliver “prescribed results” for certain special arguments.
It is used for two purposes: to define a component of the computed result to be zero when the relative error is
undefined, i.e., when the mathematical result has a zero component, and to strengthen the accuracy requirements at
special argument values. When a component of such a prescribed result is a safe number of REAL (like 0.0 or 1.0), an
implementation shall deliver a result having that safe number as its component. On the other hand, when a component
of a prescribed result is not a safe number of REAL (like K or r/2), an implementation may deliver a result in which the
component has any value in the surrounding safe interval. Prescribed results take precedence over maximum relative
error requirements but never contravene them. The real and imaginary parts may have any combination of the two
kinds of accuracy requirement.

Range definitions, under the heading Range in the specifications, are an additional source of accuracy requirements, as
stated above in clause 10. As an accuracy requirement, a range definition (other than “mathematically unbounded”)
has the effect of eliminating some of the values permitted by the maximum relative error requirements, i.e., th.ose
outside the range.

12 Overflow

Floating-point hardware is typically incapable of representing numbers whose absolute value exceeds some
implementation-defined maximum. For the type REAL, that maximum will be at least REAL’ SAFE-LARGE. For the
functions defined by this International Standard, whenever the maximum error requirements permit a result with a
component whose absolute value is greater than REAL ’ SAFE-LARGE, the implementation may

~ yield any result permitted by the maximum relative error requirements, or

- raise the exception specified by Ada for signaling overflow.

In addition, some of the functions are allowed to signal overflow for certain arguments for which neither component
of the result can overflow. This freedom is granted in the following specific cases:

a) for EXP, when re X > log, REAL * SAFE-LARGE;

b) for SIN, when imX > log, REAL ’ SAFE-LARGE + log, 2.0;

c) for COS, when imX > log, REAL * SAFE-LARGE + log, 2.0;

d) for SINH, when re X > log, REAL’ SAFE-LARGE + log, 2.0;

e) for COSH, when re X > log, REAL ’ SAFE-LARGE + log, 2 o 0.

Permission to signal overflow in these cases recognizes the difficulty of avoiding overflow in the computation of inter-
mediate results and allows the same latitude as specified in the package GENERIC-ELEMENTARY-FUNCTIONS defined in
ISO/IEC 11430 for real functions EXP, SINH and COSH.

An implementation shall raise the exception specified by Ada for signaling division by zero in the following specific
cases:

a) LOG(X) when X is zero;

b) LEFT ** RIGHT (clause 14.5) when LEFT is zero and reRIGHT < 0.0;

c) LEFT ** RIGHT (clause 14.6) when LEFT is zero and RIGHT < 0.0;

d) LEFT ** RIGHT (clause 14.7) when LEFT = 0.0 and reRIGHT < 0.0;

e) COT(X) when X is zero;

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 13814:1998
https://standards.iteh.ai/catalog/standards/sist/a507319c-d8f6-44a8-8ba1-

d8895d763d20/iso-iec-13814-1998

	'åkô—V&Eb0˝¯ÊŒË�ýê�Î$§©Ï®,=�üŒ�¼NL;#E�zÇR¸
·˜�f¾QRﬂ"jºÈ
º�7+xùŁ¡Ł)�ÙÛóÈÄÎ|ú:¶łL�

