INTERNATIONAL ISO/IEC
STANDARD 13817-1

First edition
1996-12-15

Information technology — Programming
languages, their environments and system
software interfaces — Vienna Development
Method — Specification Language —

Part1:
Base language

Technologies'de I'information =— Langages de programmation, leurs
environnements et interfaces logiciel systéme — Méthode de
développement de Vienne — Langage de spécification —

Partie 1: Langage de base

IRANIREN N S AN AR BN R R AN AW IS D 7EE=0"

TR
Iso I EC Reference number
Ao b ISO/IEC 13817-1:1996(E)

ISO/IEC 13817-1:1996(E)

Contents

1 SCOPE . o oo

2 Normative References

3 Definitions o . o
3.1 Structure of Formal Definition
8.2 ConventionS . . . v v vt

3.2.1 Informative text

4 Conformity
4.1 Specifications

5 Basic Mathematical Notation
5.1 Logic Notation fedceprelarrde stals afh o
5.2 Basic Set Theory.
5.3 Cartesian Products
5.4 Binary Relations and Functions
5.5 Finite Sequences
5.6 Finite Mappings
5.7 Ordinal Numbers
5.8 Definition by Transfinite Induction
5.9 Cardinality and Cardinal Numbers
5.10 Structured EXpressions
5.11 Semantic Function and Predicate Definitions
5.12 Use of Recursion

6 Core Abstract Syntax
6.1 Document

6.2 Definitions
6.2.1 Type Definitions

6.2.2 State Definition

6.2.3 Value Definitions

6.2.4 Function Definitions

6.2.5 Operation Definitions

© ISO/IEC 1996

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying and micro-
film, without permission in writing from the publisher.

ISO/IEC Copyright Office ® Case postale 56 « CH-1211 Geneve 20 ® Switzerland
Printed in Switzerland

ii

ISO/IEC 13817-1 : 1996(E)

6.3 EXDPressions, 21
6.3.1 Local Binding Expressions 22

6.3.2 Conditional EXpressions 22

6.3.3 Unary EXpressions 22

6.3.4 Binary Expressions 23

6.3.5 Quantified Expressions, 23

6.3.6 Jota Expression. 24

6.3.7 Set Expressions 24

6.3.8 Sequence Expressions 24

6.3.9 Map ExXpressions 25
6.3.10 Tuple Constructor, 25
6.3.11 Record EXpressions. 25
6.3.12 Apply EXpressions 25
6.3.13 Lambda Expression 26
6.3.14 Is Expression 26
6.3.15 Literals 26
6.3.16 Identifiers. 27

6.4 State Designators 28
6.5 Statements 28
6.5.1 Local Binding Statements 28

6.5.2 Block and Assignment Statements. 29

6.5.3 Conditional Statements. 29

6.5.4 Loop Statements 29

6.5.5 Non-DeterministiesSequences|)./ . w0 b0 Lol W 0 W 30

6.5.6 Call and Return Statements L 30

6.5.7 Exception Handling®Statemeénts WL S L L@ N bl b oo 31

6.6 Patterns and Bindings 31
Dynamic Semantic Domains e e e e e 34
7.1 The Domain UnIverse e e e e e s e e e e e 34
7.1.1 Basic Definitions. 34
7.1.1.1 Complete Partial Orders and Fixed Point Definitions 34

7.1.1.2 Operators on Complete Partial Orders. 35

7.1.2 A Universe of Complete Partial Orders 37

7.1.3 A Universe of Domains 38

7.2 The Semantic Domains 40
7.2.1 Basic Semantic Domains 40

7.2.2 Extended Semantic Domains, 42

7.2.3 Semantic Domains for Evaluation Functions 43

7.2.4 Auxiliary Semantic Domains 45

The Dynamic Semantics 46
8.1 Document, 46
8.2 Definitions, 48
8.2.1 Type Definitions 48
8.2.1.1 The Verification Predicate for Types 49

8.2.1.2 Evaluation Functions for Types 50

8.2.2 State Definition 57

8.2.3 Value Definitions 57
8.2.3.1 The Verification Predicate for Value Definitions 58

8.2.3.2 The Evaluation Function for Value Definitions 61

8.2.4 Function Definitions 63
8.2.4.1 Verification Predicates for Function Definitions 63

8.2.4.2 Evaluation Functions for Polymorphic Functions 67

8.2.5 Operation Definitions 69
8.2.5.1 Verification Predicates for Operation Definitions 69

8.2.5.2 Evaluation Functions for Operation Definitions 70

iii

ISO/IEC 138171 : 1996(E)

iv

8.3

8.4
8.5

8.6

8.7

EXPressions oo 72
8.3.1 Local Binding Expressions e 74
8.3.2 Conditional Expressions 76
8.3.3 Unary EXpressions 78

8.3.3.1 Numeric Operationsttt 78

8.3.3.2 Logical Operation 79

8.3.3.3 Set Operations 79

8.3.3.4 Sequence Operationst 80

8.3.3.5 Map Operations 81
8.3.4 Binary Expressions 82

8.3.4.1 Numeric Operationst 82

8.3.4.2 Numeric Comparison Operators. 85

8.3.4.3 Equality Operations 85

8.3.4.4 Logical Operations 86

8.3.4.5 Logical Set Operations 87

8.3.4.6 Set Operations 88

8.3.4.7 Sequence Operation 88

8.3.4.8 Sequence and Map Modification Operation 89

8.3.4.9 Map Operations 89

8.3.4.10 Compose and Iterate 90
8.3.5 Quantified Expressions e 93
8.3.6 Iota EXpression. 98
8.3.7 Set EXPIessionS,o it o e e e e e 99
8.3.8 Sequence Expressidns . .9 L AL LN LS AL TGS D IS L VLYY 104
8.3.9 Map EXPressions o e e e g e e e 106
8.3.10 Tuple Constructor L0t il el Lo DL el oo 108
8.3.11 Record Expressions. 108
8.3.12 Apply Expressions ISOUECJ38L-10006 « 0 oo 110
8.3.13 Lambda Exipressiondards ich ai/catalog/standards/sist/ 3a4b04 7011 57-Acle-Ol4Ade o oo oo oo 111
8.3.14 Is Expressiona2b64b14d9ad/so-1ce-13817-0-1096. . oo o o L 112
State Designators 113
SEAtemMEnts 117
8.5.1 Underlying Theory For Statements 117
8.5.2 The Statement Evaluation Functions. 119
8.5.3 Local Binding Statements 120
8.5.4 Block and Assignment Statements. 122
8.5.5 Conditional Statements. 124
8.5.6 Loop Statements 126
8.5.7 Non-Deterministic Sequences 129
8.5.8 Call and Return Statements 130
8.5.9 Exception Handling Statements 131
Patterns and Bindingso e 135
8.6.1 Patternso 136

8.6.1.1 Auxiliary Functions. 141
8.6.2 BiIndings. 144
Auxiliary Functions and Predicates 144
8.7.1 Expansion Functions. 144
8.7.2 Functions for Extending the Environment 147
8.7.3 Functions and Predicates to deal with the State 151
8.7.4 Functions and Predicates to deal with Curried Functions 153
8.7.5 Compute FUNCEIONS. . .« . oot 154
8.7.6 Generate Functions. 156
8.7.7 Make Functions 157
8.7.8 GetFunctions. 159
8.7.9 Collector FUNCtionso oot 163
8.7.10 Selector Functions 166
8.7.11 Tag-processing Functions 169

ISO/IEC 138171 : 1996(E)

8.7.12 General Functions and Predicates 171

9 The Mathematical Concrete Syntax 178
9.1 Document 178
9.2 Definitions 178
9.2.1 Type Definitions 178

9.2.2 State Definition 179

9.2.3 Value Definitions 179

9.2.4 Function Definitions 179

9.2.5 Operation Definitions 179

9.3 EXPressions. 180
9.3.1 Bracketed Expressions 180

9.3.2 Local Binding Expressions 180

9.3.3 Conditional Expressions 180

9.3.4 Unary EXpressions 181

9.3.5 Binary EXpressions 181

9.3.6 Quantified Expressions 182

9.3.7 Iota Expression................ .. 183

9.3.8 Set Expressions 183

9.3.9 Sequence EXpressions 183
9.3.10 Map Expressions 183
9.3.11 Tuple Constructor Expression 183
9.3.12 Record EXpressions. 183
9.3.13 Apply Expressions™ ©. /0 N L0 A b LV LN 183
9.3.14 Lambda EXpression i 183
9.3.15 Is Expressions.o Cal LUl L L el 183
9.3.16 Names 183

9.4 State Designators S0/ 1380701 b000n « oot e e e 183
9.5 Statements . ic/kimndards iroh areatdoossiandards/sist 204 b0ATh - 5T deleaOl dee o v oo 184
9.5.1 Local Binding Statements, | 410a4/i50-ie06- 1 2817- 1906 « v v v v v o i e 184

9.5.2 Block and Assignment Statements. 184

9.5.3 Conditional Statements. 184

9.5.4 Loop Statements 184

9.5.5 Nondeterministic Statement 184

9.5.6 Call and Return Statements 185

9.5.7 Exception Handling Statements 185

9.5.8 Identity Statement 185

9.6 Patternsand Bindings. 185
9.6.1 Patterns 185

9.6.2 Bindings. 185

9.7 Lexical Specification 185
9.7.1 General 185

9.7.2 Characters 186

9.7.3 Symbols 188

9.8 Operator Precedence 188
9.8.1 The Family of Combinators. 189

9.8.2 The Family of Applicators 189

9.8.3 The Family of Evaluators 189

9.8.4 The Family of Relations 190

9.8.5 The Family of Connectives 190

9.8.6 The Family of Constructors 190

9.8.7 Grouping 190

9.8.8 The Type Operatorst 191

10 The Interchange Concrete Syntax 192
10.1 Introduction 192
10.2 Lexis . ..o 192

ISO/IEC 13817-1 : 1996(E)

11

12

vi

10.3 Symbols . ..ot 192
The Outer Abstract Syntax 196
111 DOCUIMENE .« o v o o e e e e e 196
11.2 DefiNItIONS . . . o o o ot et e 196
11.2.1 Type Definitionso 196
11.2.2 State Definition 197
11.2.3 Value Definitions 198
11.2.4 Function Definitions 198
11.2.5 Operation Definitions 198

11.3 EXPIESSIONS . « . oottt et e e 199
11.3.1 Bracketed ExXpressions 200
11.3.2 Local Binding EXpressions 200
11.3.3 Conditional EXPressionst 200
11.3.4 Unary EXpPressions 201
11.3.5 Binary EXpressions 201
11.3.6 Quantified Expressions 202
11.3.7 Tota EXPIession.ot 202
11.3.8 Set EXPIeSSIONS . .« vttt ittt e 202
11.3.9 Sequence EXPressionst 203
11.3.10 Map EXPressionsttt 203
11.3.11 Tuple Constructor Expression 203
11.3.12 Record BEXpPresSiOns . - o yw e o co o oot e e 203
11.3.13 Apply Expressions’ 1L +0. L AW LN IS A DAL DLV RRL WV oo 203
11.3.14 Lambda EXPression« oot me ot m o m e e 204
11.3.151s Expressions. LG il L IO R el) o 204

TL1.3. 16 NAMIES .« o o o o et e e e 204

11.4 State Designators JSOAECI381Z00006 « « v v vt 204
11.5 Statementshttns//standards.iteh.ai/catalos/standards/sist/3ad4b047b-f157-4cle-914d- « + « v+ v v v v e e e o 204
11.5.1 Local Binding Statements:ho4h [4d0ad/iseico- 1381711006 « oo i 205
11.5.2 Block and Assignment Statements. L 205
11.5.3 Conditional Statements. 205
11.5.4 Loop Statements 206
11.5.5 Nondeterministic Statement 206
11.5.6 Call and Return Statements 206
11.5.7 Exception Handling Statements 206
11.5.8 Identity Statement 206

11.6 Patterns and Bindings L 207
11.6.1 Patternso 207
11.6.2 Bindings.o 207

11.7 Lexical Specification 208
The Syntax Mapping 210
12.1 Structure and Style of the Definition 210
12.1.1 Division into Modules 210
12.1.1.1 Module “OAS2CAS” 210

12.1.1.2 Module “OAS” e 210

12.1.1.3 Module “CAS” 210

12.1.1.4 Module “GetUnusedId” e 210

12.1.2 Pre-conditions in the VDM-SL Definition of the Syntax Mapping. 211
12.1.3 Transformation of a Document to CAS.Definitions. 211
12.1.3.1 The Introduction of Additional Identifiers 211

12.1.3.2 The Generation of Quoted Pre- and Post-conditions for Functions 212

12.1.3.3 The Generation of Quoted Pre- and Post-conditions for Operations 212

12.1.3.4 The Transformation of Expressions 213

12.1.3.5 Pre-conditions of Operations 213

12.1.3.6 Guards of Error Handlers 214

ISO/IEC 13817-1 : 1996(E)

12.1.3.7 Quoted Post-conditions of Implicit Operations
12.1.3.8 The Transformation of Type Definitions 214
12.1.3.9 The Transformation of Value Definitions
12.1.3.10 The Transformation of the State
12.1.4 Notational Conventions.t 215

12.2 Syntaxes and Auxiliary Functions 215
12.2.1 Module “OAS” . . . 215
12.2.2 Module “CAS” . . . 215
12.2.3 Module “GetUnusedId” 216

12.3 The Syntax Mapping Functions 216
12.3.1 Document 217
12.3.2 Definitions, 220

12.3.2.1 Type Definitions 220
12.3.2.2 State Definition 224
12.3.2.3 Value Definitions. 225
12.3.2.4 Function Definitions 225
12.3.2.5 Operation Definitions 232

12.3.3 EXPressionst 237
12.3.3.1 Bracketed Expressions. 239
12.3.3.2 Local Binding Expressions. 239
12.3.3.3 Conditional Expressions, 240
12.3.3.4 Unary Expressions 241
12.3.3.5_Binary EXpressions 241
12.3.3.6 Quantified Expressions . 6 L0, o Ll N L VY 241
12.3.3.7 Iota EXpPression o vt 241
12.3.3.8 Set Expressions | Ll L Ol LU ol Lo 242
12.3.3.9 Sequence Expressions 242
12.3.3.10 Map Expressions /i1 13217« 14006 « « o v e e e e e e e e 242
12.3.3.1 1. Tuple Constructor Expression: /2o 047hf1 57-de o O bdde v v v oo i 243
12.3.3.12 Record EXpressions. . /icoice 128 7 dal006 v v v v e e e e e e e 243
12.3.3.13 Apply EXpressions 244
12.3.3.14 Lambda Expression 244
12.3.3.151Is EXpressions oo 245
12.3.3. 16 NAMES . . . oottt 245

12.3.4 State Designators 246
12.3.5 Statements 246
12.3.5.1 Local Binding Statements 247
12.3.5.2 Block and Assignment Statements 248
12.3.5.3 Conditional Statements 248
12.3.5.4 Loop Statementst 249
12.3.5.5 NonDeterministic Statement 250
12.3.5.6 Call and Return Statements 250
12.3.5.7 Exception Handling Statements 250
12.3.5.8 Identity Statement 251

12.3.6 Patterns and Bindings, 251
12.3.6.1 Patterns 251
12.3.6.2 Bindings 252

12.3.7 Lexical Specification 253
12.3.7.1 General, 253
12.3.7.2 Characters, 253
12.3.7.3 Symbols 253

13 The Static Semantic Domains. 255

13.1 Type Representations 255
13.1.1 Special Subclasses of Type Representations 256

13.2 Environments 257
13.2.1 Accessing Environments 257

vii

ISO/IEC 138171 : 1996(E)

14

viii

13.2.2 Updating Environments 258

13.3 Well-formedness Classificationst 258
13.4 Type Relations 259
13.4.1 Subtypes 259
13.4.2 Overlapping Subtypes, Disjoint Types and Overlapping Types 264
13.4.3 Auxiliary Type Relations and Functions 0L 267

13.5 Extended Abstract Syntax. 273
The Static Semantics 273
14.1 Documentso 274
14.1.1 Auxiliary Well-formedness Requirements 275

14.2 Definibions . . o oot 276
14.2.1 Type and State Definitions 276
14.2.1.1 Typesand Typemaps....... 277

14.2.1.2 Extraction of Type Representations 279

14.2.2 Value, Function, and Operation Definitions 280
14.2.2.1 Simultaneous Definitions L 280

14.2.2.2 Ordered Definition Groups and Definition Sequences 281

14.2.2.3 Definitions 282

14.2.2.4 Definition Groups and their Ordering o 285

14.2.2.5 Ordering of Definitions 286

14.2.2.6 Asserted Visible Environments 287

14.2.2.7 Pre-Conditions 289

14.3 Expressions........ L @09 AN A G e W 289
14.3.1 Expression Characteristic Predicates 290
14.3.2 Relaxations and Restriction of Predicated LS L@ M bl oo 291
14.3.2.1 The Subsumption Rule 291

14.3.2.2 The InType Rule . . /i 12017 14006« « - o oo 291

14.3.2.3 WUnion CloSe 1u «lva/mertoloe/ctm o e et 2ol (G Te £ 57l ooe @ A]e o o e e e e e e e e 292

14.3.2.4 Sub-Environment;Based Checks .. o0t s 0006« v o v 292

14.3.3 Well-Formedness of Expressions 294
14.3.4 Bracketed Expression 295
14.3.5 Local Binding Expressions 295
14.3.5.1 Let Expression 295

14.3.5.2 Let Be ST Expression 295

14.3.5.3 Def EXpression 296

14.3.6 Conditional Expressions 296
14.3.6.1 If Expression. 296

14.3.6.2 Cases EXPression 297

14.3.7 Unary Expressions 298
14.3.7.1 Numeric Operations 299

14.3.7.2 Logical Operation 300

14.3.7.3 Set Operationsot 301

14.3.7.4 Sequence OPerationsttt 302

14.3.7.5 Map Operations 303

14.3.7.6 Map Inverse Expression. L 304

14.3.8 Binary EXpressions 304
14.3.8.1 Numeric Operationst 305

14.3.8.2 Numeric Comparison Operators. 307

14.3.8.3 Equality operations 308

14.3.8.4 Logical Operations 308

14.3.8.5 Logical Set Operations ..310

14.3.8.6 Set Operationsot 311

14.3.8.7 Sequence Operation 311

14.3.8.8 Sequence and Map Modification Operation312

14.3.8.9 Map Operations 313

14.3.8.10 Compose and Tterate L 315

ISO/IEC 13817-1 : 1996(E)

14.3.9 Quantified Expressions 316
14.3.10Iota Expression. 317
14.3.11 8et EXPIessionst 318
14.3.12 Sequence Expressions 319

14.3. 13 MapEXPIessionst 320
14.3.14 Tuple Constructor 321
14.3.15 Record EXpressions. 322
14.3.16 Apply Expressions 323
14.3.17Lambda Expressions 324
14.3.181Is EXPIessions.ot 326
14.3.19Names 326
14.3.20Literals 326
14.3.21 Auxiliary Well-formedness Predicates 327

14.4 State Designators 327
14.5 Statements 328
14.5.1 Local Binding Statements 329
14.5.2 Block and Assignment Statements. 330
14.5.3 Conditional Statements. 332
14.5.4 Loop Statements 333
14.5.5 Non-Deterministic Statement 334
14.5.6 Call and Return Statements 335
14.5.7 Exception Handling Statements 335
14.5.8 Identity Statements 337

14.6 Patterns and Bindings .} . 1. 0 0N 0 A L e LV L NN 337
14.6.1 Patterns 338
14.6.1.1 Pattern Characferistic Predicates” UL). 338

14.6.1.2 Relaxation of Pattern Characteristic Predicates 340

14.6.1.3 Well-formednessof Ratterns.1..006.o 340

14.6.2 Bindings.. i nidarde ioh areataiooiatandarss/sic 24007l 5T Aol ool dee « o oo 343
14.6.3 Value Environment . .;,quit i 43004 fioesioe 132170 bod 86 « v v v oo e e e 346

14.7 Auxiliary Functions. 347
14.7.1 Dependency Relations. 347
14.7.1.1 Free and Defined Names 348

14.7.1.2 Syntactical Sub-Components 356

14.7.1.3 The Definitional Basis of Types. 361

14.7.2 Syntax Transformations 361
14.7.3 Substitutions 363
14.7.4 Indirectly Defined Functions 368
14.7.5 Classification Functions 371

A Extensions 372
B Tool Conformity 373
B.1 Semantic conformity of tools 373
C Modules 375
C.l OVerVIEW 375
C.2 Requirements of Modularization 375
C.2.1 Language Facilities 375
C.2.1.0.1 Syntactic Separation. 375

C.2.1.0.2 Explicit Import 375

C.2.1.0.3 Explicit Export 375

C.2.1.0.4 Parameterization 376

C.2.2 SemantiCs. 376

C.3 Extant Approaches to Structuring Specifications 376
C.3.1 The Syntactic Approach 376
C.3.2 The Z Approach 376

ix

ISO/IEC 13817-1 : 1996(E)

C.3.3 The Manchester Approach (Fitzgerald & Jones) 376
C.3.4 The VVSL Approach (Middelburg) 377
C.3.5 The RAISE Approach 377
D CrossS-TeferenCeS oo oo e e 379
D.1 Cross References for the Dynamic Semantics 379
D.1.1 Naming and Typesetting Conventions Used 379
D.1.2 Listing of Functions/Predicates: Alphabetic (uses) 380
D.2 Cross References for the Concrete Syntax i 385
D.3 Cross References for the Abstract Syntax. 388
D.4 Cross References for the Syntax Mapping. 390
D.5 Cross References for the Static Semanticso 393
E Bibliography 397
Figures
1 Structure of the syntax MappIigttt 210
Tables
1 CRATaCter SEt . o o o o o e e e e 187
2 Interchange syntax: representation of symbols o oo 192

ISO/IEC 13817-1 : 1996(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)

form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate
in the development of International Standards through technical committees established by the respective organization

11CHL OL 11LCI1ALI0MdL olall(lal Ly LHTIOUS salllial LALL12ILAEES ©oLalsiCh V) VAC IESPCCLIVE OIgalliZation

to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual
interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTCI.
Draft International Standards adopted’ by the!joint technical commiittee ‘are circulated to national bodies for voting.

Publication as an International Standard requires approval by at,least.75% of the national bodies casting a vote.

International Standard ISO/IEC 13817-1 was prepared by Joint Technical Committee, ISO/IEC JTC 1, Information
technology, Subcommittee SC 22, Programming lariguages; theirienvironments and system software interfaces.

ISO/IEC 13817 consists of the following parts; under the general title Information technology — Programming
languages, their environments and system software interfaces — Vienna Development Method — Specification
Language:

— Part 1: Base language

Additional parts will specify modules and the development method.

Annexes A to E of this part of ISO/IEC 13817 are for information only.

xi

ISO/IEC 13817-1 : 1996(E)

Introduction

Historical background of the Vienna Development Method (VDM)

VDM was developed at the IBM Laboratory in Vienna. The Laboratory came into existence in 1961 when Professor
Heinz Zemanek of the Technical University in Vienna decided to move his whole group to an industrial home.!) They
had previously developed a computer called Mailiifterl at the Technical University. From 1958 the group had been
increasingly involved in software projects including the construction of one of the early compilers for the ALGOL 60
programming language. As time went on they found it difficult te get adequate support.for their projects and eventually
joined IBM. In the mid-1960s, IBM decided’to develop a new programming-language'for which the ambition was to
replace both FORTRAN and COBOL. The/anguage,pwhichywas at first called New Programming Language (until
the National Physical Laboratories in the UK objected to the acronym == “the language became known as PL/I), was
clearly going to be large and it was decided that it would be useful to try to apply formal techniques to its description.

Based on their own work — atidinfluesiced byiresearchy worleby Cal Elgot/ Peter-Landin ‘and John McCarthy — the
Vienna group developed an operational semanties‘definition-of PL/I which’they called ULD-3 (‘Universal Language
Description’; ULD-2 was the name applied to the IBM Hursley contribution to this effort — the language itself
was being developed mainly from Hursley along with the early compilers; ULD-1 was a term applied to the natural
language description of the language). The description of PL/I in ULD-3 style ran through three versions. These are
very large documents. Operational semantics is now seen as unnecessarily complicated as compared to denotational
semantics. However, to make the principles of denotational semantics applicable to a language like PL /I with arbitrary
transfer of control, procedures as arguments, complicated tasking, etc. required major theoretical break-throughs and
a considerable mathematical apparatus not available at the time. The effort of the formal definition uncovered many
language problems early and had a substantial influence on the shape of the language.

Towards the end of the 1960s serious attempts were made to use the ULD-3 description as the basis of compiler
designs. Many problems were uncovered: in general, one could say that the over-detailed mechanistic features of the
operational semantics definition considerably complicated the task of proving that compiling algorithms were correct.
But again one should be clear that the work was a technical achievement: a series of papers was published that
described how various programming language concepts could be mapped into implementations which could be proved
correct from the description (e.g. in JL71). In addition, a series of proposals was made which could simplify the
task of developing compilers from a semantic description. One of these was an early form of an exit construct (HJ70)
which led to an interesting difference between the Vienna flavour of denotational semantics and that used in Oxford.
Another VDM-like idea that arose at this time was Peter Lucas’ twin machine proof (Luc68), and subsequently the
observation that the ghost variable treatment in the twin machine could be replaced by retrieve functions (Jon70) as
a simpler way of proving most cases of data development are correct. It is worth noting that Lucas’ twin machine idea
has been re-invented several times since: the generalization of retrieve functions to relations can be seen as equivalent
to twin machines with invariants. }

Hans Becki¢ spent some time in England with Peter Landin at Queen Mary College and was the person who first
pushed the Vienna group in the direction of denotational semantics. (Until his untimely death in 1982, Hans Beckic

DThis is not intended to be a history of the Vienna Laboratory: citations are limited to those concerning VDM itself.

xii

ISO/IEC 138171 : 1996(E)

had published relatively little of his scientific research; some of his important papers were published posthumously
in Bek84.) Another crucial stimulus was the visit to the Vienna laboratory by Dana Scott in 1969 (see dBS69).

During the period from 1971 to 1973, the Vienna group was diverted into other activities not really related to formal
description. CIliff Jones at this time went back to the Hursley Laboratory and worked on a functional language
description (ACJ72) and other aspects of what has become known as VDM. In particular he published a development
of Earley’s recogniser (Jon72) which is one of the first reports to use data reification. In late 1972 and throughout '73
and ’74 the Vienna group (Cliff Jones returned and Dines Bjgrner was recruited) had the opportunity to work on a
PL/I compiler for what was then a very novel machine architecture. They of course decided to base their development
for the compiler on a formal description of the programming language. PL/I was then undergoing ECMA /ANSI
standardization (ANS76). The Vienna group chose to write a denotational semantics for PL/I (BBH*74); this is the
origin of the VDMY work on language description techniques.

During the same period, at the IBM Laboratory in Hursley, an investigation into the use of Meta-IV to formaliy describe
five of the major languages supported by IBM was carried out. The languages were PL/I, BASIC, FORTRAN, APL
and COBOL. Sketches for parts of FORTRAN and APL were written, and a full description of minimal BASIC was
produced. This work ceased when the language work was moved from Hursley.

Cliff Jones and Dines Bjgrner took upon themselves the task of making sure that something other than technical
reports existed to describe the work that had gone on on the language aspects of VDM: Be78 is a first book-length
description of that work. In ESRI, Cliff Jones also developed the work on those aspects of VDM not specifically
related to compiler development and the first book on what is now generally thought of as VDM is Jon80. Both of
these books have now been.superceded; the language description work is best accessed in Be82 and — in its second
edition — the non-language work'is best'seéen'in Jorn90 'and-also in AT91.

Within IBM, from 1978, a number of projécts uséd VDM*(for other than language descriptions). It was during this
period that specifications of several large systems were carried out at the Béblingen Laboratory. (These included a
file system for DOS and an fault report tracking system; a-data'reification for the file system was attempted to show
that the proof techniques'were viable'in-an industrial environment.) This work ‘was'carried out as part of a technology
transfer program. Later the IBM Program‘Product Development Centre in Rome became involved, and work was done
to formally specify a hotel management system. This work showed that VDM was suitable for large-scale projects;
unfortunately little has been published on this experience.

Dines Bjgrner’s group at the Technical University of Denmark strenuously pursued the use of VDM for language
description and he and his colleagues were responsible for descriptions of the CHILL programming Language and a
major effort to document the semantics of the Ada programming language (BO80).

Language work was also continued at Leicester University where a formal definition of the full Pascal language was writ-

ten (AHS82) and later a formal definition of the programming language Modula-2, which became a Draft International
Standard (AeWO).

The non-language, specification, aspects of VDM were taken up by the STL laboratory in Harlow and, partly because
of their industrial push, the British Standards Institute (BSI) was persuaded to establish a standardization activity.
This activity has not been easy because of the differences between the pressures of those interested in the language
description aspects of VDM and those who are more interested in pre- and post-conditions, data reification and
operation decomposition. It is to the credit of both the BSI and ISO Standards committee that they have managed
to bear in mind the requirements of both types of user and come up with a standard that embraces such a wide scope
of technical ideas. STL was responsible for funding the first formal semantics of VDM-SL and the work that was done
at Manchester University by Brian Monahan (Mon87) was used as the starting point of the formal description of the
specification language. A new formal description based on this work was produced because of the necessity of merging
together the two aspects of the specification language.

The outcome of the standardization effort initiated by STL through the British Standards Institution (BSI) was the
formation of a panel (BSI IST/5/-/50) whose membership was also open to participants from non-British organizations.

D1t is worth getting some acronyms sorted out: VDL stands for Vienna Description Language and was a term used to describe the
operational semantics (ULD-3) notation; VDM stands for Vienna Development Method and relates to the post-1973 work; the specification
language part of VDM is sometimes known as ‘Meta-IV’; it is now known as VDM-SL.

xiii

ISO/IEC 138171 : 1996(E)

In 1991 the need for a VDM-SL standard was also recognized by ISO/IEC JTCI* by the formation of a Working
Group, SC22/WG19. The actual work on the standard is done by the members of the BSI Panel.

Work on the Standard encouraged the building of computer-based tools to support both the language and the deve-
lopment method. Adelard produced ‘SpecBox’, a tool that provided syntax and type checking of VDM specifications.
Manchester University and the Rutherford Appleton Laboratories wrote ‘mural’ (JJLM91), a prototype tool that
supports both the specification language and the development method, providing a proof engine to help with data
reification and operation decomposition. The Technical University of Denmark and the National Physical Laboratory
have configured the Cornell Synthesizer (a structured editor tool) to support VDM-SL with some type-checking fa-
cilities — this tool was used to produce the static semantics of VDM-SL. IFAD have produced a tool for syntax and
type checking together with an interpreter for an executable subset to allow rapid prototyping.

During its history, the Vienna Development Method, together with its specification languages has had a profound
influence on both the specification of programming languages and the specification and development of systems. The
ideas in VDM have influenced several other specification languages including RAISE, COLD-K and VVSL.

2) Joint Technical Committee 1 of the International Standards Organization and the International Electro-technical Commission.

xXiv

INTERNATIONAL STANDARD © ISO/IEC ISO/MIEC 13817-1:1996(E)

Information technology — Programming languages, their
environments and system software interfaces — Vienna
Development Method — Specification Language —

Part 1:

Base language

1 Scope
This part of ISO/IEC 13817 specifies the model based specification language VDM-SL (Vienna Development Method

— Qneocification Tancnace)l Tt anecifiec:
SPeCinarion wanguage). it SpeCliies:

— two representations: the mathematical and interchange;
— the syntax;

—~ the static semantics;

— the dynamic semantics;

— conformity for specifications and tools.

It does not specify:
— the proof obligations;

— the reification rules;

— the size or complexity of a specification that will exceed the capacity of any specific data processing system or
the capacity of a particular tool, nor the actions to be taken when the corresponding limits are exceeded;

— the minimal requirements of a data processing system that is capable of supporting an implementation of a tool;

— the method that tools use for reporting errors.

	29É��»¬ulžÍÂ-œê8b3ŒÅeñWÓˆÌU¤øéX·6²¾ª½�o†œÖ€pË⁄	çÙ!ë¾W÷€pÀv.ƒJÞ�Ìk�kÅmý)è,0Üßl»@Hc|
áPÙÿž

