INTERNATIONAL ISO/IEC
STANDARD 8651-4

Second edition
1995-06-01

Information technology — Computer
graphics — Graphical Kernel System (GKS)
language bindings —

Part 4:
C

Technologies de I'information- — Infographie — Interfaces langage avec
GKS —

Partie 4: C

ISO 1EC

Reference number
ISO/IEC 8651-4:1995(E)

ISO/IEC 8651-4 : 1995(E)

Contents
FOTEWOIA.oviviveveeeeeietee ettt ettt ettt ettt b R R bR b e s se bbbt a e s bbbt v
| GaX gee L0 Tad s o) o WOURURUNUUE OO OO OO OO OO TSP SO U PO TT PO R PO vi
T SCOPE courmiuerceiiittte st b bbb 1
2 NOIMALIVE FEFEIEICES ...eviriiteiieceitee ettt bbbt b e bbbt 2
3 The Clanguage DINAINGcccouruiimiiiiii s 3
3.1 Classification and designation ... 3
3.2 FUNCHONS VEISUS IMACTOS.couiiiiiuiiiiiiiini ittt ettt ettt es e sb bbbt 3
3.3 Character SEENES ...ccoouiviiiiieiei et 3
3.4 Function Identifiers.......cccceiiiiiiinci et 3
3.5 ReGISIIAtION ..cuuieiiiieiei i 3
3.6 Identifiers for graphical IeMScc.oveiiiiiiiii 4
3.7 REIUIN VAIUES ..ottt bbb 4
3.8 HEAAELS oot 4
BB.1 GRS e Rl e 4
3.8.2 gks_compat . Do 4
3.9 Memory MaNaZEIMENEcoiuiiiiiiiiiiiteitsit ettt b 5
3.9.1 Functions which return simple Lists ..o 5
3.9.2 Functions which return complex data structures ..o 5
310 Error handling ..o 7
3.10.1 Application supplied error handlers...... .o b s Wi 7
3.10.2 EITOT COUBS ..uuumiiiniiiiiiictriiet ettt ebs s sa e ss s es bbb ss st ss s sesens 7
3.10.3 C-specific GKS €rrorsh i Lol i il Ll i ho Gl 7
3.11 Colour representations and Specificationsc..ocooeiniiin 7
3,12 Colour CharaCteriStiCS ... ewee e g 4 6 oo e e rererenesenssesesnssssessssss bbbt 7
3.13 Storage of multi-dimensional ArTAYS ... i. ke ey 7rivissbessis 5 iiopesbenisine gz nenseenereneierererenins 8
3.13.1 Storage Of 2*3 MABICES i urtsicaessiores s snden fohhornnsensnssnssssssesssersisteiensinrnsssicasiinaes 8
3.13.2 Storage of conics in 3*3 MatriceS.......ccooiirviiiriiiiiiii e 8
3.13.3 Storage Of COIOUL @ITAYSouiuireriiiriiieiieiecie et 8
3.14 Compatibility with the 1991 edition.........coouiiiii 8
B TADIES ..ottt s 9
4.1 Abbreviation policy in construction of identifiers ..o 9
4.2 Table of abbreviations USed.........cccccoeiiiiiiiiiiiiiic 9
4.3 FUNCHON NAMES ..ot s 13
43.1 List ordered alphabetically by bound name ... 13
4.3.2 List ordered alphabetically by GKS name............ccoooiiiiin 20
5 Type definitionS......cooiiiiiiiiiiiii e 28
5.1 Mapping of GKS data types ... 28
5.2 Environment-defined type definitions.........cccooiiiiiiiiii 28
5.3 Implementation dependent type definitions ... 29
54 Implementation independent type definitions ... 35
6 MaCro defiNItIONS c.cvvveeiiiieicc s 91
6.1 Function identifiers. ... 91
6.1.1 In order of APPeATANCEcoiruiiieiciie s 91
6.1.2 Inalphabetical Order.........cccooiiiiiiiii 95

© ISO/IEC 1995

All rights reserved. Unless otherwise specified, no part of this publication may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office * Case postale 56 * CH-1211 Genéve 20 » Switzerland

Printed in Switzerland

ii

© ISO/IEC ISO/IEC 8651-4 : 1995(E)
6.2 EITOT COABS ..oviiiiiiiiiiiiiiicicctce ettt ettt se e s e et nees 99

6.3 MISCEIIANEOUS ..ot 104
6.3.1 LINETYPES oottt 104

6.3.2 MaTrKET LY PES.....oiiiiiiieiiiiic ettt et 104

6.3.3 HatCh STYIeS.......oiiiiiiiccc e 104

6.3.4 COloUr MOAEIS ..o 104

6.3.5 Prompt and echo types ..o s 105

6.3.6 Default parameter of Gopen_gKS.........ccccoovovueueirueeeieeeeieeceeeeeeeeeee e 105

7 C GKS function iNterfacecccciiviiiiiiiieiriiieice st 106
7.1 Notational CONVENLIONScciiuiieieiiriciieireiee ettt 106

7.2 Workstation independent fUnCtONS...........cccoviieirieieniiceieces e 106
7.2.1 Control fUNCHONS ..ot 106

7.2.2 Output FUNCHONS ... 108

7.2.3 Design output fUNCtONSc.coiiiiiiriricccee e 110

7.2.4 Primitive attribute functions ..o 113

7.2.5 Normalization transformation functionsc..cocccveceurniceencnencenncennn. 119

7.2.6 NDC picture funCtionsc..cccciiiiiiiencecce e 120

7.2.7 Metafile fUNCHONScoceuiiiiiiiiie e 121

7.2.8 Picture part store functionscccocenieinnciee e 122

7.2.9 INPUL fUNCHONS ..o 124

7.2.10 Fontand glyph funetions | b b ol et 131

7.211 Audit and playback functions ... 131

7.212 Inquiry functions [l &l 0 S Ll 132

7.213 Utility fUNCHONS ..ot 145

7.3 WOrKStation fUNCHONS ...ty 5556 2085160 5616 eeeseee s seees s 148
7.3.1 Control fUNCHONS i tesimesderesbeokenes 0450 den e e es by shrobafae e g eveserserorsonsanasesssene 148

7.3.2 INQUITY FUNCHONS 5100 5 ey e e G ettt 155

7.3.3 Retrieval functions ... 172

7.3.4 Viewing utility functions ... 173

7.3.5 Colour utility fUNCHONScocciiiiiiiiie e 173

7.4 Segment functions and workstation activation functions.............ccccevererrienisreeinnnnes 173
7.4.1 Segment fUNCHONS........co.oiiiiiiicc e 173

7.4.2 Workstation activation functionscceeovrniineiennesesceeeeen 176

7.4.3 ULty fUNCHONS «.ooi e 176

ATITIEXES oot h bbbttt 177
A Compiled GKS/C Specificationccouuieieiiiiiiiieieiniiieisieeetsistee ettt s e sse s 177
A1 Data types in compilation Order..........cocooiiiiiiinnce e 177

A2 MACTOS oottt 223

A3 FUNCHON CALlS ..ot 231

A4 Compatibility Jayer.. ..o 260

B Sample PrOGramsccooiiiiiiiiiiiiicc et 271
Bil STAR bttt bttt 271

B2 TRON ..t s st b et bt ettt 273

C Short function Identifiersccoiiiiiiiiiicce e 280
C.1 Inorder of aPPeAranCecccccuiiuiiiiiiicieiete e 280

C.2 Inalphabetical Order ... 287

D Memory Management ...ttt 294
D.1 INtrOUCHON c.cueiiiiicccieccc ettt s en s s 294

D.2 Functions that return simple liStS.........ccocooiiiiiiiiiii e 294
D.2.1 Operation of ging_list_line_inds ... 295
D.3 Functions that return structured data..........cccooviiriiiiiniiieeccc s 297
D.3.1 Operation of gereate_store.........iienniinnee e 298

il

ISO/IEC 86514 : 1995(E) © ISO/IEC

D.3.2 Operation of ging stroke_st and ging pat_rep...............o. 300

D.3.3 Operation of AL _SEOX@.......ccuvirueiiiriiiitiii e 304

E Compatibility with the 1991 edition of ISO/IEC 86514ccovviiiimiiiniinis 307
E.1 Comparison of this edition of ISO/IEC 86514 with the 1991 edition.......cocveeeierieeeenne 307
E.1.1 Changes in ISO/IEC 86514 data types........ccoovuieiiciniiininiinisine 307

E.1.2 Changes in ISO/IEC 86514 funCONScocovrivtieieininiiiiiiiin i 308

E.2 The compatibility Jayerooooiiiiiiiiiiiii 309

E.3 Theheader gks_ComPAat « . oot 309

E.4 Datatypesin gks_compat B ... 309
E4.1 Renamed data tyPes ..o 309

E.4.2 Renamed fields of data types ... 309

E.4.3 Obsolete data tyPes.....cooirrieiiiiiiiicieiiiii 310

E.5 IMIACTOS cvtuienteeieieetet ettt sttt st b et eb b e d s bbbk 314

E.6 Functions in the compatibility layer..........ccooiiiiiiii 314
E.6.1 Replaced fUNCHONS......coiiiiiiieiiiieiii s 314

E.6.2 Obsolete fUNCHONScciiiiiiiiiiii e 317

F FUNCHON LISES. couttieiiteieiee ettt 324
F.1 Alphabetic by GKS NAME. ..ot 324

F.2 Alphabetic by binding Nameoooiiiiiiiiiiiiiiiiiii s 331

v

© ISO/IEC ISO/IEC 8651-4 : 1995(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the Inter-
national Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are members of ISO or IEC participate in the
development of International Standards through technical committees established
by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with
ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint
technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the
joint technical committee are circulated to national bodies for voting. Publication
as an International Standard requires approval by at least 75 % of the national
bodies casting a vote.

International Standard ISO/IEC 8651-4 was prepared by Joint Technical
Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 24,
Computer graphics and image processing.

This second edition cancels and replaces the first edition (ISO/IEC 8651-4:1991),
which hag beemtechnically revised;

ISO/IEC 8651-4 consists of the following parts, under the general title
Information technology — Computer'graphics — Graphical Kernel System (GKS)
language bindings:

— Part 1: FORTRAN

— Part 2: Pascal

— Part 3: Ada

— Part4: C
Annexes A to F of this part of ISO/IEC 8651 are for information only.

ISO/IEC 86514 : 1995(E) © ISO/IEC

Introduction

The Graphical Kernel System (GKS) functional description is registered as ISO/IEC 7942-1:1994. As
explained in the Scope and Field of Application of ISO/IEC 7942-1, that International Standard is
specified in a language independent manner and needs to be embedded in language dependent layers
(language bindings) for use with particular programming languages.

The purpose of this part of ISO/IEC 8651 is to define a standard binding for the C computer programming
language.

vi

INTERNATIONAL STANDARD © ISO/IEC ISO/IEC 8651-4:1995(E)

Information technology — Computer graphics —
Graphical Kernel System (GKS) language bindings —

Part 4:
C

1 Scope

The Graphical Kernel System (GKS), ISO/IEC 7942—1:1994 , specifies a language independent nucleus of
a graphics system. For integration into a programmingilanguage, GKS is embedded in a language depen-
dent layer obeying the particular conyentions of that language. ., This part of ISO/IEC 8651 specifies such a
language dependent layer for the Clanguage.

ISO/IEC 86514 : 1995(E) © ISO/IEC

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of
this part of ISO/IEC 8651. At the time of publication, the editions indicated were valid. All standards are
subject to revision, and parties to agreements based on this part of ISO/IEC 8651 are encouraged to investi-
gate the possibility of applying the most recent editions of the standards indicated below. Members of [EC
and ISO maintain registers of currently valid International Standards.

ISO/IEC 7942-1:1994, Information technology — Computer graphics and image processing — Graphical
Kernel System (GKS) — Part 1 : Functional description.

ISO/IEC 9899:1990, Programming languages — C.

ISO/IEC TR 9973:1994, Information technology — Computer graphics and image processing — Procedures
for registration of graphical Items.

© ISO/IEC ISO/IEC 8651-4 : 1995(E)

3 The C language binding

The C language binding of GKS shall be as described in clauses 3 to 7.

3.1 Classification and designation

This part of ISO/IEC 8651 incorporates the rules of conformance defined in the GKS Standard (ISO/IEC
7942-1) for GKS implementations, with those additional requirements specifically defined for C bindings in
GKS.

The following criteria shall determine conformance of an implementation to this part of ISO/IEC 8651:

In order to conform, an implementation of the C binding of GKS shall implement GKS as specified in
ISO/IEC 7942-1. It shall make visible all of the declarations in the C binding specified in this part of
ISO/TEC 8651 for a specific level of C.

Thus, for example, the syntax of the function names shall be precisely as specified in the binding and
parameters shall be of the data types stated in the binding.

3.2 Functions versus macros

An implementation may substitute macros for functions. However, the macros shall be designed so that
side-effects work properly. In general, a macro cannot be used to replace the error handling function
gerr hand. See also 3.10.

3.3 Character strings

The C language represents character strings as an array of characters terminated by the null character (i.e.
7\0”). This means that the null character isnotjusablesas.a printable character.

3.4 Function identifiers

The function names of GKS are all mapped to C functions which begin with the letter g. Words and
phrases used in the GKS function names are often abbreviated in the representation and are always
separated with the underscore character "_". The set of such abbreviations is given in 4.2, and the result-
ing C function names are listed in 4.3. For example, the abbreviation for the GKS function DELETE SEG-
MENT FROM WORKSTATION is gdel _seg ws. del, seg, and ws are abbreviations for
DELETE, SEGMENT, and WORKSTATION. The conjunctive FROM is mapped to the null string.

The C language (ISO/IEC 9899) requires that compilers recognize internal identifiers which are distinct in
at least 31 characters. That standard also requires that external identifiers (i.e. those seen by the linker) be
recognized to a minimum of six characters, independent of case.

Implementations which run in environments where two distinct C internal identifiers would be equivalent,
if they were both external identifiers, shall include a set of object-like macros in the header which equate
the long names to a set of short names. A possible set of short names for a compiler that accepts only 8
characters for external definitions may be found in annex C.

3.5 Registration

ISO/IEC 7942 reserves certain value ranges for registration! as graphical items. The registered graphical
items will be bound to the C programming language (and other programming languages). The registered
item binding will be consistent with the binding presented in this part of ISO/IEC 8651.

! For the purpose of this part of ISO/IEC 8651 and according to the rules for the designation and operation of registration
authorities in the ISO/IEC Directives, the ISO/IEC council has designated the National Institute of Standards and Technol-
ogy (Institute of Computer Sciences and Technology), A-266 Technology Building, Gaithersburg, MD 20899, USA to act
as registration authority.

ISO/IEC 86514 : 1995(E) © ISO/IEC

3.6 Identifiers for graphical items

Generalized Drawing Primitives and Escape functions are referenced via identifiers. This part of ISO/IEC
8651 specifies the format of the identifiers but it does not specify the registration of the identifiers. The
identifiers are used as arguments to the functions ggdp and gescape.

An implementation may also represent GDPs and Escapes as separate functions, but this is not required.

There are two formats for these identifiers. One format is for registered GDPs and Escapes and the other
format is for unregistered GDPs and Escapes.

The format for registered GDP identifiers is:

#define GGDP_Rn (n) /* where ’'n’ is the registered GDP
identifier */

The format for unregistered GDP identifiers is:

#define GGDP_Un (-n) /* where n’ is implementation
dependent */

The format for registered Escape function identifiers is:

#define GESCAPE Rn (n) /* where ’'n’ is the registered
Escape identifier */

The format for unregistered Escape function identifiers is:

#define GESCAPE_Un (-n) /* where n’ is implementation
dependent */

3.7 Return values

All GKS/C functions have return value’ void.
3.8 Headers

3.8.1 gks.h

C provides a mechanism to access information stored in a header via the #include preprocessing direc-
tive. Clause 5 of this part of ISO/IEC 8651 describes the data types that shall be defined in the header
gks . h which shall be included in any application program that intends to use GKS via the C binding.

This part of ISO/IEC 8651 uses the data type size_t (inter alia as a field in the data type Gdata). The
type size_t isenvironment-defined (i.e. unsigned longor unsigned int)andis defined in the
headers <stdio.h>, <stddef.h>, <stdlib.h>, <string.h>, <time.h>.

Additional implementation-dependent items may be placed in this header if needed. These items should

"non

start with the sentinel "G" or "g", as far as applicable.

The header gks.h shall also contain external declarations for all GKS/C functions because they have a
void return type. For example, the declaration for the function gopen_gks would look like this:

extern void gopen_gks (const char *err_ file, size_t memory);

3.8.2 gks_compat.h

For application programs which used to run on top of the 1991 edition of this part of ISO/IEC, the header
gks_compat .h is provided. gks_compat.h includes GKS/C data types that are no longer supported,
as well as external declarations for all GKS/C functions that are no longer supported. Implementations of
this part of ISO/IEC 8651 shall support these functions in a compatibility layer, according to the guidelines
in Annex G of ISO/IEC 7942-1:1994.

© ISO/IEC ISO/IEC 86514 : 1995(E)

3.9 Memory management

The application shall allocate the memory needed for the data returned by the implementation. In general,
the application will allocate a C structure and pass a pointer to that structure to an inquiry routine, which
will then place information into the structure. However, a number of inquiry functions return variable
length data, the length of which is not known a priori by the application.

These functions fall into two classes. One class of functions returns a simple, homogeneous, list of items.
For example, the function INQUIRE LIST OF MARKER INDICES returns a list of the available marker
indices. The other class returns complex, heterogeneous data structures. For example, the function
INQUIRE GKS STATE LIST ENTRY returns a piece of the GKS state which may include several data
structures of different length. The binding of these two classes of functions is described in detail below.
Subclause 3.10 describes the errors that can be invoked during execution of functions which use the
memory management policy.

3.9.1 Functions which return simple lists

Inquiry functions which return a list of items are bound such that the application can inquire about a por-
tion of the list. This list is a subset of the implementation’s internal list and is called the application’s list.
This allows the application to process the implementation’s list in a piecewise manner rather than all at
once.

The application allocates the memory for a list and passes that list to the implementation. The implementa-
tion places the results 'of the inquiry!into the list/ In'order to support this policy’of memory management,
three additional parameters have been added te functions which return lists:

a) num_elems_appl_list: An integer input parameter which is the length of the application’s list.
The value of num_elems_appl_ 1list indicates the number of items (i.e. list elements) which will
fit into the application list. A value of 0'is-valid and allows the application to determine the size of the
implementation’s'list (which"is retiirned 'via" num’ elems “imp1-~1ist) without having the imple-
mentation return any of the ‘elements’of ‘its “list.”” If " num_elems_appl_list is negative,
GE_APPL_LIST LENGTH_LT_ZERO is returned as the value of the error indicator parameter.

b) start_ind: An integer input parameter which is an index into the implementation’s list. (Index O is
the first element of both the implementation’s and application’s list.) start_ind indicates the first
item in the implementation’s list that is copied into index O of the application’s list. Items are copied
sequentially from the implementation’s list into the application’s list until the application’s list is full or
there are no more items in the implementation’s list. If start_ind is out of range, error
GE_START_IND_INVAL isreturned as the value of the error indicator parameter.

¢) num_elems_impl_1list: An output parameter which is a pointer to an integer. The implementation
stores into this parameter the number of items that are in the implementation’s list.

In annex D, a possible underlying mechanism is described.

3.9.2 Functions which return complex data structures

The data returned by inter alia the ESCAPE function, the AWAIT INPUT function and the functions which
return state lists or description tables can be complex in structure. They cannot be represented by a simple
list of items. It would be an onerous task for the application to have to allocate and prepare data structures
for these routines. In order to facilitate this task of using these inquiry functions, the binding defines a new
resource, called a Store, to manage the memory for these functions.

The Store resource is opaque to the application.The application does not know the structure of the Store or
how it is implemented. The Store is defined as a void *. This part of ISO/IEC 8651 defines two new
functions which create (in CREATE STORE, bound as gcreate_store) and delete (in DELETE
STORE, bound as del_store) a Store.

A Store is used by the implementation to manage the memory needed by the functions which return com-
plex data structures. Without specifying an implementation of a Store, it is safe to say that it will contain

ISO/IEC 86514 : 1995(E) © ISO/IEC

and control memory needed to hold the data returned by these functions and also contain some bookkeep-
ing information about the contents and size of the memory.

The semantics of the Store resource provide two levels of memory management. The implementation is
responsible for managing the memory at a low level because it uses, reuses, allocates and deallocates
memory from the system in order to return information to the application. But the application is ultimately
responsible for managing the memory at a high level because it creates and deletes Stores.

A Store is passed as a parameter to a function returning complex data structures. Another parameter to this
function is a pointer to a pointer to a structure which defines the format of the returned data. The Store
contains memory for the structure and any additional memory referenced by fields within the structure. The
application accesses the returned data through its pointer to the structure. It does not use the Store to access
the data.

A Store continues to hold the information from the function until the Store is deleted by the DELETE
STORE function or until the Store is used as an argument to a subsequent function, which returns complex
data structures. At that time, the old information is replaced with the new. Thus multiple calls to functions
overwrite the contents of a Store. A Store only contains the results of the last function.

This part of ISO/IEC 8651 defines two errors that can occur when using or creating a Store; these errors are
described in 6.2. For most functions using a Store, these and other errors are returned via the "error indica-
tor" parameter. However, the function ESCAPE does not have an error indicator parameter. For this func-
tion, the error reporting mechanism is used when an error is encountered. For this function, the implemen-
tation shall, in addition tofreporting the error, set the'pointer to ithe returned data'to NULL when an error
occurs. See the binding of these functions for more information.

The definitions for the functions CREATE STORE‘and'DELETE STORE follow:

CREATE STORE
Parameters:
Out error indicator 1
Out store STORE

Effect: Creates a Store and returns a handle to it in the output parameter store. If the Store cannot
be created, the error indicator is set to one of the following error values:

GE_GKS_NOT_ OPEN GKS not in proper state;
GKS shall be in the state (GKOP, *)
GE_ERR_ALLOC_STORE Error while allocating Store

Errors: None.

DELETE STORE
Parameters:
Out error indicator I
Out store STORE

Effect: Deletes the Store and all internal resources associated with it. If there is not an error, the
parameter store will be set to NULL to signify that it is no longer valid. If an error is detected,
the error indiocator is set to one of the following values:

GE_GKS_NOT_OPEN GKS not in proper state;
GKS shall be in the state (GKOP, *)

Errors: None.
In 7.2.13.2, the C specification of these functions is given. In annex D, a possible underlying mechanism is

6

© ISO/IEC ISO/IEC 86514 : 1995(E)

illustrated.
3.10 Error handling

3.10.1 Application supplied error handlers

User-defined error handlers shall accept the same arguments as the standard error handler. The user-
defined error handler is specified by the utility function (see also 7.2.13.2)

SET ERROR HANDLER

Parameters:
In New error handling function Function
Out Old error handling function Function

Effect: Sets the GKS error handling function to New error handling function and returns the current
error handling function to Old error handling function.

Errors: None.

Application defined error handling functions accept the same arguments as the standard error handler. They
may invoke the standard error logging function ERROR LOGGING.

ISO/IEC 7942 defines the initial error-handling functionsto beyERROR HANDEING, that is, the value of
the parameter Old error handling function points to ERROR HANDLING, when SET ERROR HANDLER
is called for the first time.

When the application changes the error handling function, the implementation will invoke the new function
when an error is detected. If the application.calls the default error handling function ERROR HANDLING,
ERROR HANDLING will always call the function ERROR LOGGING.,

If New error handler is not a valid pointer, the error handling/willoautomatically be done by the standard
error handler ERROR HANDLING.

User-defined error handlers may invoke the standard error logging function ERROR LOGGING.

3.10.2 Error codes

Hard coding numbers into a program decreases its maintainability. Therefore, this part of ISO/IEC 8651
defines a set of constants for the GKS error numbers. Each error constant begins with the characters GE_.
See also 6.2 for the error macros.

3.10.3 C-specific GKS errors

This part of ISO/IEC 8651 defines some additional error messages. In 6.2 the numbers and their macros
are given.

3.11 Colour representations and specifications

GKS defines 4 colour models (RGB, CIE L*u*v* 1976, HLS and HSV) of which RGB and CIE L*u*v*
are mandatory. For each of these models, a colour specification is defined (Grgb, Gcieluv, Ghsv,
Ghls). The colour representation and specification are defined in 5.4 by the types Gcolr_rep and
Gecolr_ specif.

3.12 Colour characteristics

GKS defines the colour characteristics as a basic type. The colour characteristics is defined in this part of
ISO/IEC 8651 by the data type Gecolr_chars, which is documented in 5.3.

ISO/IEC 86514 : 1995(E) © ISO/TEC

3.13 Storage of multi-dimensional arrays

3.13.1 Storage of 2*3 matrices

The entries of Gtran_matrix data types shall be stored such that the segment transformation is defined
by

Tp.x = mat[0,0]*p.x + mat[0,l]l*p.y + mat[0,2];
Tp.Y = mat[l,0]*p.x + mat[1l,1]*p.y + mat([1,2];

where p is a 2D point, Tp its transformation and mat is of type Gtran_matrix.

3.13.2 Storage of conics in 3*3 matrices

The entries of Geconic_matrix data types shall be stored such that the conic is defined by
a[0,0]x2 + (a[0,1] + a[1,0]) xy + a[l,1]y?
+ (a[0,2] + a[2,0Dx + (a[l,2] + a[2,1])y + a[2,2] = O

where a is of type Gconic_matrix.

3.13.3 Storage of colour arrays

The entries of Gpat_repydata typesshall be stored such-thatthe,colour specifier;at the (i,))-th entry is
given by

XXXj; = colr rect.dir ‘colrlgxx[i(+ DX*31%id= O,....DX-1;]
colr_indid- = colr _rect.colr_arrayl[i + DX*j];
DX = colr_rect.dims.size x;
DY = —colr.rect.dims.size y;

where xxx = (rgb|cieluv|hls|hsv) is of type“Gxx and ‘celr) rect is of type Gpat_rep.

3.14 Compatibility with the 1991 edition

In the second (1994) edition of ISO/IEC 7942 some functions and data types of the 1985 edition have been
overtaken or deprecated. They are documented in the informative annex G. Examples are the GKSM func-
tions, which have been overtaken by AUDIT functions.

In this edition of ISO/IEC 8651—4 all functions and all data types of of the 1991 edition (the C binding of
the 1985 edition of ISO/IEC 7942) have been preserved. The support of overtaken or deprecated functions
or data types falls into two categories:

1) Functions which have been renamed (e.g. INQUIRE TEXT EXTENT — GET TEXT EXTENT) or
which have been incorporated into more compact functions (e.g. the OUTPUT functions).
These functions and their related data types are documented in clauses 5 and 7. For example,
the function CREATE OUTPUT PRIMITIVE has been bound to the C function
gcreate_out_prim Besides that, however, the output functions gpolyline,
gpolyline set, gnurb_set, gconic_sec_set, gpolymarker, gfill area,
gfill area_set, gell_sec_set, gell_seg set, gell disc_set,
gclosed_nurb_set, gtext, gcell_ array, gdesign, ggdp have been defined.

2) Functions which have been deprecated (INQUIRE GKS LEVEL) or which have been overtaken by other
functions (GKSM functions, for example) .
These functions are documented in annex E. They will be deleted at the next edition of this part of
ISO/IEC 8651.

© ISO/IEC ISO/IEC 8651-4 : 1995(E)

4 Tables

4.1

Abbreviation policy in construction of identifiers

In the construction of the several data types, function names, etc., the following policy is applied:

1
2)

3)

4)

)

4.2

All identifiers in the C binding are abbreviated using the same abbreviations for every component and
using underscores o denoie bilanks.
The plural of an expression is constructed by adding an "s" after its abbreviation; so, for example, "vec-

tor" is abbreviated to "vec" and "vectors" is abbreviated to "vecs"; if an expression is mapped to NULL,
so will be its plural.

Digits are also preceded by underscores.
The word REALIZED is not abbreviated in the second field of the enumeration data type
Ging_type; in all other cases it is abbreviated using the list in 4.2.
Construction of GKS/C identifiers:
a) Function names:
"g" (lower case) followed by abbreviated function name in lower case;
b) Data types:
"G" (upper case) followed by abbreviated data type in lower case;

c¢) Fields of data types{thé following refinementsiare’ used: redundant" (words in the field name that
are identical to those in the structure name) parts are omitted, if the context allows this; thus the
linewidth in the field of Gline 'bundle (is abbreviated<to jwidth, because the context makes
clear which width is used;

d) Function macros:
"Gfn_" followed bylabbreviation of function name;

e) Error macros:
"GE_" followed by some abbreviated expression;

f) Fields of enumeration types:
"G" (upper case) followed by a prefix followed by an abbreviation of the field name; this prefix is
constant for each enumeration field; all the fields are in upper case.

Table of abbreviations used

In this table, only words which are abbreviated are listed. They are used for

The word "NULL" denotes those words which are deleted completely when forming function names or

function names;
data types;

fields of data types;
€ITOT Macros.

data types.

Word or Phrase Abbreviation
CIE L*u*v* (colour model) cieluv
accumulate accum

actual act

addition add

alignment align

allocate alloc

and NULL

	xnªØ\™L·MÞ¸ClC_p2‡¾Ï¥EPs���†�€ONQ¶©r;3¬®�‚Iª��HZØ-5:ñå�-ƒž€‚
€�ì Ôﬂ®#¬‹#$bUü¤�&]vÅ–¸

