

Edition 2.0 2020-07

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Nuclear facilities – Instrumentation and control systems – Design, location and application criteria for installed area gamma radiation dose rate monitoring equipment for use during normal operation and anticipated operational occurrences

Installations nucléaires – Systèmes d'instrumentation et de contrôle-commande – Critères de conception, d'implantation et d'application pour les matériels de surveillance du débit de dose de rayonnement gamma à poste fixe, utilisés pendant le fonctionnement normal et lors d'incidents de fonctionnement prévus

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2020 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Secretariat 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 300 terminological entries in English and French, with equivalent terms in 19 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

afds/sist/18941/3d-2c3a-403b-aa60-

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -

webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études, ...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Découvrez notre puissant moteur de recherche et consultez gratuitement tous les aperçus des publications. Avec un abonnement, vous aurez toujours accès à un contenu à jour adapté à vos besoins.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 300 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 19 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Edition 2.0 2020-07

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Nuclear facilities – Instrumentation and control systems – Design, location and application criteria for installed area gamma radiation dose rate monitoring equipment for use during normal operation and anticipated operational occurrences

<u>EC 61031:2020</u>

Installations nucléaires – Systèmes d'instrumentation et de contrôle-commande – Critères de conception, d'implantation et d'application pour les matériels de surveillance du débit de dose de rayonnement gamma à poste fixe, utilisés pendant le fonctionnement normal et lors d'incidents de fonctionnement prévus

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 13.280; 27.120.10

ISBN 978-2-8322-2197-6

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FC	DREWO	RD	4				
IN	TRODU	ICTION	6				
1	Scop	Scope					
2	Norm	Normative references					
3	Term	Terms and definitions					
4	Abbr	Abbreviated terms					
5	Design principles						
Ũ	5 1	5.1 Eulertion and application criteria					
	5.2	General requirements	11				
	5.2.1	General characteristics and lifecycle.	12				
	5.2.2	Safety classification and applicable standards	12				
	5.3	Range of measurements	13				
	5.4	Location criteria	13				
	5.4.1	General	13				
	5.4.2	Detector assembly	14				
	5.4.3	Processing assembly	14				
	5.4.4	Alarm assembly	14				
	5.5	Energy response	14				
	5.6	Signal processing and display	15				
	5.7	Power supply	15				
6	Func	Functional test					
7	Qual	ification	15				
	7.1	General	15				
	7.2	Environmental qualification	15				
	7.3	Seismic qualification	16				
	7.4	Electromagnetic interference	16				
8	Calib	ration	16				
	8.1	General	16				
	8.2	Calibration and functional check	16				
	8.2.1	General	16				
	8.2.2	Initial calibration	16				
	8.2.3	Calibration check after installation	16				
	8.2.4	Functional check.	16				
	8.2.5	Countermeasures to loss of monitoring during calibration or functional check	17				
	8.3	Radiation calibration	17				
Ar	nnex A (informative) Examples of locations and measuring ranges of area radiation					
m	onitors.		18				
Ar	nnex B (informative) "Foldback" of detector	20				
Bi	bliograp	by	21				
	5 1						
Fi	aure B.	1 – Foldback illustration	20				
Fi	gure B 2	2 – GM recovery times	20				

Table 1 – Overview of the standards covering the domain of radiation monitoring in nuclear facilities	7
Table A.1 – Light water cooled reactor plants	18
Table A.2 – Gas cooled reactor plants	18
Table A.3 – Sodium cooled fast reactor plants	19

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC 61031:2020</u> https://standards.iteh.ai/catalog/standards/sist/1894f73d-2c5a-405b-aa60-67ee5bb682ee/iec-61031-2020

INTERNATIONAL ELECTROTECHNICAL COMMISSION

NUCLEAR FACILITIES – INSTRUMENTATION AND CONTROL SYSTEMS – DESIGN, LOCATION AND APPLICATION CRITERIA FOR INSTALLED AREA GAMMA RADIATION DOSE RATE MONITORING EQUIPMENT FOR USE DURING NORMAL OPERATION AND ANTICIPATED OPERATIONAL OCCURRENCES

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61031 has been prepared by subcommittee 45A: Instrumentation, control and electrical power systems of nuclear facilities, of IEC technical committee 45: Nuclear instrumentation.

This document is to be used in conjunction with IEC 60532:2010.

This second edition cancels and replaces the first edition published in 1990. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) The scope of the standard is extended from nuclear power plants to nuclear facilities and the title is accordingly aligned.
- b) The relevant standards published by IEC SC 45A since the publication of the first edition are taken into account and refered to when relevant.

The text of this International Standard is based on the following documents:

FDIS	Report on voting		
45A/1328/FDIS	45A/1341/RVD		

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC 61031:2020</u> https://standards.iteh.ai/catalog/standards/sist/1894f73d-2c5a-405b-aa60-67ee5bb682ee/iec-61031-2020

INTRODUCTION

a) Technical background, main issues and organisation of the standard

This IEC standard specifically focuses on radiation monitoring systems used for normal operation and anticipated operational occurrences in nuclear facilities such as nuclear power plants.

This document is intended for use by purchasers in developing specifications for their plant specific radiation monitoring systems and by manufacturers to identify needed product characteristics when developing systems for normal operation and anticipated operational occurrences. Some specific instrument characteristics such as measurement range, required energy response, and ambient environment requirements will depend upon the specific application. In such cases guidance is provided on determining the specific requirements, but specific requirements themselves are not stated.

This document is intended to be used in conjunction with IEC 60532:2010.

For area gamma radiation dose rate monitoring equipment for accident and post-accident conditions refer to IEC 60951-1 and IEC 60951-3 (not within the scope of this document).

b) Situation of the current standard in the structure of the IEC SC 45A standard series

IEC 61031 is at the third level in the hierarchy of SC 45A standards.

This document provides requirements for equipment for area radiation monitoring in normal conditions in conjunction with IEC 60532. Other standards developed by SC 45A and SC 45B provide guidance on instruments used for monitoring radiation as part of normal operations.

The IEC 60761 series provides requirements for equipment for continuous off-line monitoring of radioactivity in gaseous effluents in normal conditions. IEC 60861 provides requirements for equipment for continuous off-line monitoring of radioactivity in liquid effluents in normal conditions. IEC 60768 provides requirements for equipment for continuous in-line and on-line monitoring of radioactivity in process stream in normal and incident conditions. Finally, ISO 2889 gives guidance on gas and particulate sampling. In addition, IEC 62705 was issued on July 2014. IEC 62705 provides guidance on the application of existing IEC/ISO standards covering design and qualification of system and equipment for RMS, and the overviews of the standards covering the radiation monitoring in nuclear facilities are listed in Table 1 below.

Doveloper	ISO		IEC		
Developer			SC 45A		SC 45B
Scope	Sampling	Calibration	Accident and post accident conditions	Normal conditions	
Radioactive noble gas off-line monitoring	ISO 2889	ISO 4037-1, ISO 4037-3	IEC 60951-1, IEC 60951-2	N/A	IEC 62302, IEC 60761-1, IEC 60761-3
Radioactive aerosol off- line monitoring	ISO 2889	ISO 4037-1, ISO 4037-3	IEC 60951-1, IEC 60951-2	N/A	IEC 60761-1, IEC 60761-2
Radioactive iodine off- line monitoring	ISO 2889	ISO 4037-1, ISO 4037-3	IEC 60951-1, IEC 60951-2	N/A	IEC 60761-1, IEC 60761-4
Liquid off-line monitoring	N/A	N/A	N/A	N/A	IEC 60861
Tritium off-line monitoring	N/A	N/A	N/A	N/A	IEC 62303 / IEC 60761-1, IEC 60761-5
On-line or in-line iTe	N/A	ISO 4037-1, ISO 4037-3	IEC 60951-1, IEC 60951-4	IEC 60768	N/A
Area monitoring	N/ATAI	ISO 4037-1, ISO 4037-3	IEC 60951-1, IEC 60951-3	IEC 61031	IEC 60532
Centralized system	N/A	N/A	IEC 61504, IEC 60960		IEC 61559-1
https://stand Classification/basic requirements	ords.iteh.ai/ca 67ee N/A	talog/standard 5bb682ce/iec- N/A	IEC 61513, IEC 60880, IEC 60987, IEC 61226, IEC 62138, IEC 62566, IEC 62645, IEC 61250 IEC 61500, IEC 61504		-aa60- N/A
Qualification	N/A	N/A	IEC 60980, IEC 62003, IEC/IEEE 60780-323		IEC 62706

Table 1 – Overview of the standards covering the domain of radiation monitoring in nuclear facilities

For more details on the structure of the IEC SC 45A standard series, see item d) of this introduction.

c) Recommendations and limitations regarding the application of this Standard

It is important to note that this document establishes no additional functional requirements for safety systems.

d) Description of the structure of the IEC SC 45A standard series and relationships with other IEC documents and other bodies' documents (IAEA, ISO)

The top-level documents of the IEC SC 45A standard series are IEC 61513 and IEC 63046. IEC 61513 provides general requirements for I&C systems and equipment that are used to perform functions important to safety in NPPs. IEC 63046 provides general requirements for electrical power systems of NPPs; it covers power supply systems including the supply systems of the I&C systems. IEC 61513 and IEC 63046 are to be considered in conjunction and at the same level. IEC 61513 and IEC 63046 structure the IEC SC 45A standard series and shape a complete framework establishing general requirements for instrumentation, control and electrical systems for nuclear power plants.

IEC 61513 and IEC 63046 refer directly to other IEC SC 45A standards for general topics related to categorization of functions and classification of systems, qualification, separation, defence against common cause failure, control room design, electromagnetic compatibility, cybersecurity, software and hardware aspects for programmable digital systems, coordination of safety and security requirements and management of ageing. The standards referenced directly at this second level should be considered together with IEC 61513 and IEC 63046 as a consistent document set.

At a third level, IEC SC 45A standards not directly referenced by IEC 61513 or by IEC 63046 are standards related to specific equipment, technical methods, or specific activities. Usually these documents, which make reference to second-level documents for general topics, can be used on their own.

A fourth level extending the IEC SC 45A standard series, corresponds to the technical reports which are not normative.

The IEC SC 45A standards series consistently implements and details the safety and security principles and basic aspects provided in the relevant IAEA safety standards and in the relevant documents of the IAEA nuclear security series (NSS). In particular this includes the IAEA requirements SSR-2/1, establishing safety requirements related to the design of nuclear power plants (NPPs), the IAEA safety guide SSG-30 dealing with the safety classification of structures, systems and components in NPPs, the IAEA safety guide SSG-39 dealing with the design of instrumentation and control systems for NPPs, the IAEA safety guide SSG-34 dealing with the design of electrical power systems for NPPs and the implementing guide NSS17 for computer security at nuclear facilities. The safety and security terminology and definitions used by SC 45A standards are consistent with those used by the IAEA.

IEC 61513 and IEC 63046 have adopted a presentation format similar to the basic safety publication IEC 61508 with an overall life-cycle framework and a system life-cycle framework. Regarding nuclear safety, IEC 61513 and IEC 63046 provide the interpretation of the general requirements of IEC 61508-1, IEC 61508-2 and IEC 61508-4, for the nuclear application sector. In this framework IEC 60880, IEC 62138 and IEC 62566 correspond to IEC 61508-3 for the nuclear application sector. IEC 61513 and IEC 63046 refer to ISO as well as to IAEA GS-R-3 and IAEA GS-G-3.1 and IAEA GS-G-3.5 for topics related to quality assurance (QA). At level 2, regarding nuclear security, IEC 62645 is the entry document for the IEC/SC 45A security standards. It builds upon the valid high level principles and main concepts of the generic security standards, in particular ISO/IEC 27001 and ISO/IEC 27002; it adapts them and completes them to fit the nuclear context and coordinates with the IEC 62443 series. At level 2, regarding control rooms, IEC 60964 is the entry document for the IEC/SC 45A control rooms standards and IEC 62342 is the entry document for the IEC/SC 45A ageing management standards.

NOTE 1 It is assumed that for the design of I&C systems in NPPs that implement conventional safety functions (e.g. to address worker safety, asset protection, chemical hazards, process energy hazards) international or national standards would be applied.

NOTE 2 The IEC/SC 45A domain was extended in 2013 to cover electrical systems. In 2014 and 2015 discussions were held in IEC/SC 45A to decide how and where general requirements for the design of electrical systems were to be considered. IEC/SC 45A experts recommended that an independent standard be developed at the same level as IEC 61513 to establish general requirements for electrical systems. Project IEC 63046 is now launched to cover this objective. When IEC 63046 is published this NOTE 2 of the introduction of IEC/SC 45A standards will be suppressed.

NUCLEAR FACILITIES – INSTRUMENTATION AND CONTROL SYSTEMS – DESIGN, LOCATION AND APPLICATION CRITERIA FOR INSTALLED AREA GAMMA RADIATION DOSE RATE MONITORING EQUIPMENT FOR USE DURING NORMAL OPERATION AND ANTICIPATED OPERATIONAL OCCURRENCES

1 Scope

This document applies to the design, location and application of installed equipment for monitoring local gamma radiation dose rates within nuclear facilities during normal operation and anticipated operational occurrences. High range area gamma radiation dose rate monitoring equipment for accident conditions currently addressed by IEC 60951-1 and IEC 60951-3 is not within the scope of this document.

This document does not apply to the measurement of neutron dose rate. Additional equipment for neutron monitoring may be required, depending on the plant design, if the neutron dose rate makes a substantial contribution to the total dose equivalent to personnel.

This document provides guidelines for the design principles, the location, the application, the calibration, the operation, and the testing of installed equipment for continuously monitoring local gamma radiation dose rates in nuclear facilities under normal operation conditions and anticipated operational occurrences. These instruments are normally referred to as area radiation monitors. Portable instruments are also used for this purpose but are not covered by this document.

<u>EC 61031:2020</u>

Radiation monitors utilized in area radiation monitoring equipment are addressed in IEC 60532. As discussed in IEC 60532, measurement of gamma radiation may be expressed by a number of alternative quantities depending on national regulations. However, for this type of instrument, the most likely quantity to be measured is the air kerma (Gy), or the ambient dose equivalent $H^*(10)(Sv)$.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60050-395:2014, International Electrotechnical Vocabulary – Part 395: Nuclear instrumentation: Physical phenomena, basic concepts, instruments, systems, equipment and detectors

IEC 60532:2010, Radiation protection instrumentation – Installed dose rate meters, warning assemblies and monitors – X and gamma radiation of energy between 50 keV and 7 MeV

IEC 60880:2006, Nuclear power plants – Instrumentation and control systems important to safety – Software aspects for computer-based systems performing category A functions

IEC 60951-1:2009, Nuclear power plants – Instrumentation important to safety – Radiation monitoring for accident and post-accident conditions – Part 1: General requirements

IEC 60951-3:2009, Nuclear power plants – Instrumentation important to safety – Radiation monitoring for accident and post-accident conditions – Part 3: Equipment for continuous high range area gamma monitoring

- 10 -

IEC 60980:1989, Recommended practices for seismic qualification of electrical equipment of the safety system for nuclear generating stations

IEC 60987:2007, Nuclear power plants – Instrumentation and control important to safety – Hardware design requirements for computer-based systems

IEC 61226:2009, Nuclear power plants – Instrumentation and control important to safety – Classification of instrumentation and control functions

IEC 61513:2011, Nuclear power plants – Instrumentation and control important to safety – General requirements for systems

IEC 62003:2020, Nuclear power plants – Instrumentation, control and electrical power systems – Requirements for electromagnetic compatibility testing

IEC 62138:2018, Nuclear power plants – Instrumentation and control systems important to safety – Software aspects for computer-based systems performing category B or C functions

IEC 62566:2012, Nuclear power plants – Instrumentation and control important to safety – Development of HDL-programmed integrated circuits for systems performing category A functions

IEC 62705:2014, Nuclear power plants – Instrumentation and control important to safety – Radiation monitoring systems (RMS): Characteristics and lifecycle

<u>C 61031:2020</u>

IEC/IEEE 60780-323:2016, Nuclear facilities – Electrical equipment important to safety – Qualification 67ee5bb682ee/iee-61031-2020

3 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 60050-395 as well as the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

NOTE Specific terminology for the radiation monitoring system is given in IEC 62705 and specific terminology for the area radiation monitor is given in IEC 60532

3.1

anticipated operational occurrence

deviation of an operational process from normal operation that is expected to occur at least once during the operating lifetime of a facility but which, in view of appropriate design provisions, does not cause any significant damage to items important to safety or lead to accident conditions

[SOURCE: IAEA Safety Glossary, 2018 edition]

3.2

area radiation monitor

equipment designed for continuously monitoring local gamma radiation dose rates in a fixed position in a nuclear facility

Note 1 to entry: The equipment usually consists of a gamma radiation sensitive detector, a signal processing unit, interconnecting cables for signal transmission and a power supply. It is used to measure and display, locally and/or at some remote location, the radiation dose rate present at the detector location.

3.3

calibration check

calibration procedure which is followed periodically on each area radiation monitor to ensure that the response of the equipment remains within specified limits

3.4

local dose rate

dose rate at the detector location measured in whatever radiation dose rate quantity approved under national regulations and displayed on the instrument in appropriate units

Note 1 to entry: See also IEC 60532.

3.5

4

normal operation

operation within specified operational limits and conditions

[SOURCE: IAEA Safety Glossary, 2018 edition]

Abbreviated terms (standards.iteh.ai)

EMC	Electromagnetic Compatibility
HPD	HDL (hardware description language) – Programmed Device
I&C	Instrumentation and Control 682ee/iec-61031-2020
IAEA	International Atomic Energy Agency
IEC	International Electrotechnical Commission
ISO	International Organization for Standardization
KERMA	Kinetic Energy Released per unit MAss
NPP	Nuclear Power Plant
NSLR	National Standardizing Laboratory of a country for Radioactivity measurement
RMS	Radiation Monitoring System

5 Design principles

5.1 Function and application criteria

The primary purpose of area radiation monitors is to protect personnel by alerting them to significant changes in radiation levels. To this end, the monitors measure continuously the gamma radiation dose rate in defined areas of a nuclear facility, and inform plant personnel by audible and/or visual alarms when predetermined dose rate levels are exceeded. Items such as meters, displays and alarm indicators, etc., shall be designed so that plant personnel in the vicinity of the local indication devices can quickly and easily determine the conditions in the areas monitored.

Area radiation monitors serve to protect plant personnel against radiation hazards and to inform them immediately when predetermined radiation levels are exceeded within the plant.

NOTE Area radiation monitors are not normally used for personnel dosimetry purposes, except as a source of backup information, nor are they normally used for the determination of the length of time which personnel are permitted to remain within radiation fields. They complement rather than replace operational health physics measurements and procedures including use of portable equipment. Nevertheless, they can also provide information on the effectiveness of such procedures.

Because of their location, area radiation monitors may also be capable of indicating changes in plant parameters which are of interest to the plant operator. Where this is the case, monitor output functions shall be available at a remote location, usually the plant control room or an associated area.

Area radiation monitors may also be used for interlocks and/or for initiating protective actions. In some cases, they may even be considered as inputs to reactor safety systems, although this would not normally be regarded as good practice.

Area radiation monitors may also be used under accident conditions if the range of measurement is appropriate to the defined purpose and all sub-assemblies are qualified for the accident environmental conditions at their locations. This application is covered in more detail in IEC 60951-1 and IEC 60951-3.

5.2 General requirements

5.2.1 General characteristics and lifecycle

The design of the area radiation monitor shall meet the requirements of IEC 60532. Furthermore, the additional specific requirements given in IEC 61031 shall be met.

If signals from area radiation monitors are used as inputs to interlock systems or plant and/or reactor safety systems, the design of such monitors shall also meet the appropriate requirements of such systems (for example, in respect to interface requirements, classification, reliability, qualification, etc.).

<u>EC 61031:2020</u>

In the selection of the area radiation monitor, consideration shall be given to the range of measurement, temperature, pressure, humidity, electromagnetic interference, vibration, expected total integrated dose and seismic qualification in the areas where the equipment and in particular the detector will be located. Any requirements to extend the normal environmental specifications shall be identified (see IEC 60532).

The area radiation monitor performing functions that are important to safety shall comply with the requirements relating to the characteristics and lifecycle of RMSs defined in IEC 62705 and the standards referenced in IEC 62705 (e.g. IEC 61226).

5.2.2 Safety classification and applicable standards

The area radiation monitor shall be classified according to its suitability to implement I&C functions up to a defined category during the system specification phase as shown in IEC 61513:2011, 6.2.3.

According to the category of the function implemented, the following standards shall be applied:

a) System and equipment performing category A functions

Any software in the area radiation monitor performing category A function shall be designed and maintained in accordance with IEC 60880. Any HDL-Programmed Device (HPD) in the equipment of the area radiation monitor performing category A function shall be designed and maintained in accordance with IEC 62566. Any hardware in the area radiation monitor performing category A function and including software or HPD shall be designed and maintained in accordance with IEC 60987. b) System and equipment performing category B or C functions

Any software in the area radiation monitor performing category B or C function shall be designed and maintained in accordance with IEC 62138. Any hardware in the area radiation monitor performing category B function and including software shall be designed and maintained in accordance with IEC 60987. Hardware performing category C function in the area radiation monitor shall be designed, selected and maintained according to the supplier's requirements.

5.3 Range of measurements

The required area radiation monitoring range shall be specified as agreed between manufacturer and purchaser. These ranges shall take into account the radiation environment of the plant design on the basis of:

- the expected minimum gamma radiation dose rate and whether it is desirable to monitor that rate,
- the expected dose rate in normal operating conditions, and
- the expected peak dose rate under anticipated operational occurrences.

The measuring range shall normally be high enough to assure an on-scale reading for radiation dose rates up to the expected peak dose rate under anticipated operational occurrences. However, when high transient dose rates occur in areas during periods when personnel access is prevented, it may not be necessary to meet this requirement. In order to avoid false dose rate indication in this situation, the radiation monitoring system shall comply with the overload testing specified in IEC 60532.

In the event of a high transient dose rate, the instrument shall maintain on over-range indication and alarm status. It is necessary to avoid "foldback" of the detector. "Foldback" is shown in Annex B.

C 61031:2020

Unless otherwise specified, the area radiation monitor shall at least cover the measuring range of 10^{-5} Gy/h or Sv/h to 10^{-2} Gy/h or Sv/h. It is expected that, in most applications, a measuring range of four or five decades will be used (see Annex A). Six or more decades may be required for some special applications.

Examples of ranges of measurement of area radiation monitors in boiling and pressurized light water reactors, gas cooled reactors and sodium cooled fast reactors are given in Annex A.

5.4 Location criteria

5.4.1 General

Location criteria and safety requirements for area radiation monitors shall be appropriate to the plant design.

Generally, they will be required at those locations which can be routinely entered by plant personnel and where one or more of the following plant conditions are identified:

- a) where the dose rates are significant and may increase rapidly and without other indication;
- b) where the radiation dose rate can increase sufficiently to require evacuation of personnel;
- c) where occasional high radiation dose rates might preclude access at certain times;
- d) where the dose rate data is required prior to personnel access;
- e) where the dose rate can rapidly increase due to external operation of the controls by others.

In addition, area radiation monitors may be required at locations such as access routes and plant areas where access is essential under accident conditions.