

IEC TS 61200-101

Edition 1.0 2018-11

TECHNICAL SPECIFICATION

Electrical installation guide FANDARD PREVIEW Part 101: Application guidelines on extra-low-voltage direct current electrical installations not intended to be connected to a public distribution network

IEC TS 61200-101:2018 https://standards.iteh.ai/catalog/standards/sist/aeeb1766-1583-4cd7-b181e7a1cabadad6/iec-ts-61200-101-2018

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2018 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number) text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing 21 000 terms and definitions in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published _______IEC Customer Service Centre - webstore.iec.ch/csc details all new publications released. Available online and 200 ff you wish to give us your feedback on this publication or also once a month by emailtips://standards.iteh.ai/catalog/standardneed/further/assistance/pleasel.contact the Customer Service e7a1cabadad6/iec-ts-Centre: sales@jec.ch.

IEC TS 61200-101

Edition 1.0 2018-11

TECHNICAL SPECIFICATION

Electrical installation guide FANDARD PREVIEW Part 101: Application guidelines on extra-low-voltage direct current electrical installations not intended to be connected to a public distribution network

IEC TS 61200-101:2018 https://standards.iteh.ai/catalog/standards/sist/aeeb1766-1583-4cd7-b181e7a1cabadad6/iec-ts-61200-101-2018

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 91.140.50

ISBN 978-2-8322-6254-2

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOF	REWO	RD	4		
INT	RODU	CTION	6		
1	Scop	e	7		
2	Norm	ative references	7		
3	Term	s and definitions	7		
4	Conc	ept of an electrical installation	8		
5	DCs	unnlies	۰ م		
6	Load		۰ م		
0			۳۹ م		
0). I ເວ	Minimum and maximum valtage values	9		
7	∙.∠ Wirin		10		
' 7	• • • • • • • • • • • • • • • • • • •		10		
7	ו. יס	I ype of wiring system	10		
7	.∠ '3	Cross sectional areas of conductors	۱۱ 11		
7	.5 ' <u>4</u>	Selection of conductors	11		
'	7.4.1	12 V nominal voltage			
	7.4.2	24 V nominal voltage	11		
	7.4.3	36 V nominal voltage AND ARD PREVIEW	12		
	7.4.4	48 V nominal voltage	12		
8	Prote	ction against electric shock and ards.iteh.ai)	13		
8	5.1	General	13		
8	.2	Provision for basic protection	13		
8	.3	Provision for fault protectionadad6/iec-ta-61200-101-2018	13		
8	.4	Protection by safety extra-low voltage system (SELV system)	13		
9	Prote	ction against overcurrent	13		
10	Arcin	g	14		
11	Exam	- pple of a typical architecture	14		
Annex A (informative) Voltage drop limits for extra-low-voltage installations					
Δ	· 1	Voltage drop limits in consumers' installations	15		
, Α	. 2	Estimation of voltage drop	10		
Ann	exB(informative) Example of an installation for energy access using the SELV			
	syste	m as protective measure against electric shock	16		
Bibli	Bibliography				
	•				
Fiau	ıre 1 –	Concept of a low voltage electrical installation	9		
Figu	Figure 2 – Colour identification of conductors in DC circuits				
Figu	110 2 110 R 1	- Example of an installation for energy access using SELV system as			
prot	ective	measure against electric shock	16		
•		-			
Tahl	le 1 –	Preferred voltages for equipment	10		
Tahl	. د ما	Maximum length with respect to maximum voltage drop (12 V nominal			
volta	age)	waximum longin with respect to maximum voltage drop (12 v nonilital	11		
Tab	le 3 –	Maximum length with respect to maximum voltage drop (24 V nominal			
volta	age)		12		

IEC TS 61200-101:2018 © IEC 2018 - 3 -

Table 4 – Maximum length with respect to maximum voltage)	n voltage drop (36 V nominal	12
Table 5 – Maximum length with respect to maximum voltage)	n voltage drop (48 V nominal	12
Table A.1 – Maximum voltage drops		15

iTeh STANDARD PREVIEW (standards.iteh.ai)

IEC TS 61200-101:2018 https://standards.iteh.ai/catalog/standards/sist/aeeb1766-1583-4cd7-b181e7a1cabadad6/iec-ts-61200-101-2018

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRICAL INSTALLATION GUIDE –

Part 101: Application guidelines on extra-low-voltage direct current electrical installations not intended to be connected to a public distribution network

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. e7a1cabadad6/iec-ts-61200-101-2018
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC TS 61200-101, which is a Technical Specification, has been prepared by IEC technical committee 64: Electrical installations and protection against electric shock.

The text of this Technical Specification is based on the following documents:

Draft TS	Report on voting
64/2284/DTS	64/2338/RVDTS

Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 61200 series, published under the general title *Electrical installation guide*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer. https://standards.iteh.ai/catalog/standards/sist/aceb1766-1583-4cd7-b181-

INTRODUCTION

Many people in the world who still have no access to electricity would benefit from access to electrical power. This can now be achieved with distributed electrical sources using renewable energy.

Many of these electrical sources using renewable energy generate direct current (e.g. photovoltaic system, wind turbines) and supply from these renewable energies is not constant: photovoltaic panels do not operate at night and wind turbines require wind for generating electrical energy. Therefore, the use of storage units becomes a necessity. Manufacturers of stationary secondary batteries have been investing a lot in these technologies and prices will soon become affordable to those people in need of access to electricity.

In addition, new technologies, such as light emitting diodes (LEDs) and/or other electronic equipment use direct current and connecting these types of current-using equipment to electricity sources using renewable energy through DC electrical installations is more and more realistic. For changing DC voltage, DC/DC converters are available.

All requirements and recommendations in this document comply with IEC 60364 (all parts) [1]¹.

The voltage is limited to 60 V DC taking into account environmental conditions and use cases.

iTeh STANDARD PREVIEW (standards.iteh.ai)

IEC TS 61200-101:2018 https://standards.iteh.ai/catalog/standards/sist/aeeb1766-1583-4cd7-b181e7a1cabadad6/iec-ts-61200-101-2018

¹ Numbers in square brackets refer to the Bibliography.

ELECTRICAL INSTALLATION GUIDE -

Part 101: Application guidelines on extra-low-voltage direct current electrical installations not intended to be connected to a public distribution network

1 Scope

This part of IEC 61200 applies to individual DC low-voltage electrical installations entirely supplied by local power sources, and not intended to be connected to a public distribution network and having a nominal voltage lower or equal to 60 V DC within the extra-low-voltage limit.

This document also applies to DC installations according to use cases TIER 2 and TIER 3 of the World Bank defined in ESMAP 008/15 Report [2].

This document does not apply to shared or collective electrical installations which are covered in IEC 61200-102 [3].

2 Normative references STANDARD PREVIEW

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, inthe statest edition of the referenced document (including any amendments) applies indards iteh ai/catalog/standards/sist/aeeb1766-1583-4cd7-b181e7al cabadad6/iec-ts-61200-101-2018

IEC 60269-3, Low-voltage fuses – Part 3: Supplementary requirements for fuses for use by unskilled persons (fuses mainly for household or similar applications) – Examples of standardized systems of fuses A to F

IEC 60445, Basic and safety principles for man-machine interface, marking and identification – Identification of equipment terminals, conductor terminations and conductors

IEC 60898-2, *Electrical accessories – Circuit-breakers for overcurrent protection for household and similar installations – Part 2: Circuit-breakers for AC and DC operation*

IEC 60898-3², *Electrical accessories – Circuit-breakers for overcurrent protection for household and similar installations – Part 3: Circuit-breakers for DC operation*

IEC 61558-2-6, Safety of transformers, reactors, power supply units and similar products for supply voltages up to 1 100 V – Part 2-6: Particular requirements and tests for safety isolating transformers and power supply units incorporating safety isolating transformers

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

² Under preparation. Stage at the time of publication: IEC/PRVC 60898-3:2018.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/ •
- ISO Online browsing platform: available at http://www.iso.org/obp •

3.1

individual electrical installation

single consuming and/or producing electrical installation

3.2

collective electrical installation

set of consuming electrical installations sharing one common set of local power supplies and energy storage equipment

3.3 public distribution network

PDN

set of coordinated equipment intended to be used for the distribution of electrical energy to private electrical installations and operated by a public organization

3.4

overcurrent protective device OCPD

device provided to interrupt an electric circuit in case the conductor current in the electric circuit exceeds a predetermined value for a specified duration

(standards.iteh.ai)

[SOURCE: IEC 60050-826:2004, 826-14-14]

IEC TS 61200-101:2018

https://standards.iteh.ai/catalog/standards/sist/aeeb1766-1583-4cd7-b181-Concept of an electrical installation eracabadadorec-ts-61200-101-2018

4

Any low-voltage electrical installation is to be considered as a set of electrical equipment having the following functions (see Figure 1):

- supply (e.g. photovoltaic systems, wind turbine, batteries);
- distribution (e.g. distribution board, wiring systems, socket-outlets); .
- consumption (e.g. fans, lighting, appliances, pumps, batteries). •

NOTE Batteries can be considered as a power supply and as a consuming unit (prosumer).

The installation shall be designed to meet the requirements for safety extra-low-voltage (SELV) systems.

IEC TS 61200-101:2018 © IEC 2018

-9-

Figure 1 - Concept of a low voltage electrical installation

(standards.iteh.ai)

5 DC supplies

As the low-voltage electrical installation is not intended to be connected to a public distribution network (PDN), local power source(s) is (are) necessary. Examples of local power sources are:

- local DC generating set,
- storage units,
- photovoltaic system, and
- wind turbine.

Any combination of different types of local power sources is possible.

The output voltage of the installed sources shall meet the requirements for SELV systems.

Where power sources use renewable energy, which provides intermittent supply, storage of this energy provides flexibility and comfort to the users as consumption of the electrical energy becomes possible at almost any time.

6 Loads

6.1 Preferred nominal voltages

The selection of the rated voltage for the electrical installation has an impact on the length of cables and protective measures.

Derived from the Ohm's law, the use of ELV limits the lengths of cables as decreasing the voltage will increase the current and consequently the voltage drop along cables (see Annex A).