

Edition 2.0 2017-09

INTERNATIONAL STANDARD

AMENDMENT 1

Ultrasonics – Field characterization – **Characterization** – **Characteriz**

Document Preview

IEC 62359:2010/AMD1:2017

https://standards.iteh.ai/catalog/standards/iec/ec88228f-c130-4b67-a1ee-071d05236ca3/iec-62359-2010-amd1-2017

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2017 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office	Tel.: +41 22 919 02 11
3, rue de Varembé	Fax: +41 22 919 03 00
CH-1211 Geneva 20	info@iec.ch
Switzerland	www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and also once a month by email.

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing 20 000 terms and definitions in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

65 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: csc@iec.ch.

<u>EC 62359:2010/AMD1:2017</u>

https://standards.iteh.ai/catalog/standards/iec/ec88228f-c130-4b67-a1ee-071d05236ca3/iec-62359-2010-amd1-2017

Edition 2.0 2017-09

INTERNATIONAL STANDARD

AMENDMENT 1

Ultrasonics – Field characterization – **And Ards** Test methods for the determination of thermal and mechanical indices related to medical diagnostic ultrasonic fields

Document Preview

IEC 62359:2010/AMD1:2017

https://standards.iteh.ai/catalog/standards/iec/ec88228f-c130-4b67-a1ee-071d05236ca3/iec-62359-2010-amd1-2017

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 17.140.50

ISBN 978-2-8322-4821-8

Warning! Make sure that you obtained this publication from an authorized distributor.

FOREWORD

This amendment has been prepared by IEC technical committee 87: Ultrasonics.

The text of this amendment is based on the following documents:

FDIS	Report on voting
87/661/FDIS	87/665/RVD

Full information on the voting for the approval of this amendment can be found in the report on voting indicated in the above table.

The committee has decided that the contents of this amendment and the base publication will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

Document Preview

EC 62359:2010/AMD1:2017

https://standards.iteh.ai/catalog/standards/iec/ec88228f-c130-4b67-a1ee-071d05236ca3/iec-62359-2010-amd1-2017

Introduction to Amendment

IEC 62359 published The second edition of was in 2010. Since then. IEC 60601-2-37:2007/AMD1:2015 has been published and calls for provision of attenuated spatial peak temporal average intensity, $I_{spta,\alpha}$, and attenuated spatial peak pulse average intensity, $I_{sppa,\alpha}$, at specific spatial maximum points in the ultrasonic field on the beam axis. No IEC standard describes the determination of these quantities at these specific positions. IEC 62359 for determining the thermal indices currently uses similar values at other positions, therefore, the determination of attenuated spatial peak temporal average intensity, $I_{spta,\alpha}$, and attenuated spatial peak pulse average intensity, $I_{spba,\alpha}$, has been added as an annex in this amendment.

Additionally, references to newly published collateral standards have been updated.

– 2 –

IEC 62359:2010/AMD1:2017 © IEC 2017

2 Normative references

Replace the first reference by the following:

IEC 60601-2-37:2007, Medical electrical equipment – Part 2-37: Particular requirements for the basic safety and essential performance of ultrasonic medical diagnostic and monitoring equipment

IEC 60601-2-37:2007/AMD1:2015

Replace the second reference by the following:

IEC 61157:2007, Standard means for the reporting of the acoustic output of medical diagnostic ultrasonic equipment IEC 61157:2007/AMD1:2013

Replace, in the third reference, "IEC 61161:2006" by "IEC 61161:2013".

Replace the fifth reference by the following:

IEC 62127-1:2007, Ultrasonics – Hydrophones – Part 1: Measurement and characterization of medical ultrasonic fields up to 40 MHz IEC 62127-1:2007/AMD1:2013

Terms and definitions 3

Replace the first existing paragraph by the following new paragraph:

For the purposes of this document, the terms and definitions given in IEC 60601-2-37, IEC 62127-1, IEC 62127-2, IEC 62127-3, IEC 61157 and IEC 61161 apply. Several of these are repeated below for convenience and others are listed because they have been modified for application to this standard.

3.3

acoustic repetition period

Replace the existing definition by the following new definition:

time interval between corresponding points of consecutive cycles, pulses or scans, depending on the current operating mode

Add the following new NOTES 2 and 3:

NOTE 2 For continuous wave modes, the acoustic repetition period is the time interval between corresponding points of consecutive cycles

NOTE 3 For combined operating modes where transmit pulsing of the constituent modes may be interrupted, the *arp* determination should take into account non-pulsing time to calculate an average period.

Replace "NOTE 2" by NOTE 4".

3.4

acoustic working frequency

Replace, in the existing definition, the words "at the position corresponding to the spatialpeak temporal-peak acoustic pressure" by "on the beam axis, beyond the break-point depth, corresponding to depth of maximum pulse-intensity integral z_{nii} ."

Replace, in existing NOTE 2, the words "at the position of maximum pulse-pressure-squared integral" by "at the depth for peak pulse-intensity integral".

3.7

attenuated peak-rarefactional acoustic pressure

Replace, in the existing definition, the words "at a specified distance from" by "on a plane perpendicular to the **beam axis** at a specified distance *z* from".

Replace, in the definition list after Equation (2), the words "z is the distance from the **external transducer aperture** to the point of interest" by "z is the distance from the **external transducer aperture** along the **beam axis** to the plane containing the point of interest".

3.8

attenuated pulse-intensity integral

Replace, in the definition, the words "at a specified distance from" by "on a plane perpendicular to the **beam axis** at a specified distance z from".

Replace, in the definition list after Equation (3), the words "z is the distance from the **external transducer aperture** to the point of interest" by "z is the distance from the **external transducer aperture** along the **beam axis** to the plane containing the point of interest".

Replace "NOTE" by "NOTE 1".

Add new NOTE 2:

NOTE 2 For measurement purposes of this standard, pii_{α} is equivalent to $1/(\rho c)$ times the **attenuated pulsepressure-squared integral** at depth *z*, with ρc denoting the characteristic acoustic impedance of pure water.

3.9

attenuated spatial-average temporal-average intensity

Replace, in the definition, the words "at a specified distance from" by "on a plane perpendicular to the **beam axis** at a specified distance *z* from".

Replace, in the definition list after Equation (4), the words "z is the distance from the external transducer aperture to the point of interest" by "z is the distance from the external transducer aperture along the beam axis to the plane containing the point of interest".

3.10

attenuated spatial-peak temporal-average intensity

Replace, in the definition, the words "at a specified distance from" by "on a plane perpendicular to the **beam axis** at a specified distance *z* from".

Replace, in the definition list after Equation (5), the words "*z* is the distance from the **external transducer aperture** to the point of interest" by "*z* is the distance from the **external transducer aperture** along the **beam axis** to the plane containing the point of interest".

3.11

attenuated temporal-average intensity

Replace, in the definition, the words "at a specified distance from" by "on a plane perpendicular to the **beam axis** at a specified distance *z* from".

Replace, in the definition list after Equation (6), the words "z is the distance from the **external transducer aperture** to the point of interest" by "z is the distance from the **external transducer aperture** along the **beam axis** to the plane containing the point of interest".

3.13 beam-axis

Replace the term "beam-axis" by "beam axis".

3.17 bone thermal inc

bone thermal index

Delete, in the definition, "or neonatal cephalic (through the fontanelle)".

3.19

break-point depth

Add, after the existing definition, the words "acoustic working frequency and intensity parameters (such as attenuated spatial-peak temporal-average intensity)"

Add, after "where D_{eq} is the equivalent aperture diameter" the words "for non-scanning modes".

Replace the existing NOTE 2 by the following new note:

NOTE 2 For scanning modes, use the non-scanning mode D_{eq} value calculation [Equation (8)]. Do this using the **output beam area** of one **ultrasonic scan line**; the central scan line, corresponding to the **beam axis** (i.e. the line where *pii*, *MI*, *and* f_{awf} are measured).

3.21

cranial-bone thermal index

Replace the existing definition by the following new definition:

thermal index for applications in which the ultrasound beam passes through bone near the beam entrance into the body, such as paediatric and adult cranial or neonatal cephalic applications

3.22

default setting

Replace, in the definition, "ultrasonic diagnostic equipment" by "medical diagnostic ultrasonic equipment".

3.23

IEC 62359:2010/AMD1:2017

tps://stallee-071d05236ca3/iec-62359-2010-amd1-2017 depth for mechanical index

Replace, in the definition, the words "to the plane of maximum attenuated pulse-intensity integral (pii_{α}) " by "to the plane of maximum attenuated pulse-pressure-squared-integral $(ppsi_{\alpha})$ ".

Add new NOTE 1:

NOTE 1 Because z_{MI} may occur closer to the transducer than the **break-point depth** z_{bp} , use of $ppsi_{\alpha}$ rather than pii_{α} is technically more appropriate. If $z_{ppsi,\alpha}$ is larger than z_{bp} , then $z_{ppsi,\alpha}$ and $z_{pii,\alpha}$ are equal.

Replace "NOTE" by "NOTE 2".

3.24

depth for peak pulse-intensity integral

Replace the existing term, definition and note by the following new term, definition and notes:

3.24

depth for maximum pulse intensity integral

depth z on the beam axis and beyond the break-point depth z_{bp} from the external transduscer aperture to the plane of maximum pulse-intensity integral (*pii*) as approximated by the pulse-pressure-squared integral (*ppsi*)

NOTE 1 Depth for maximum pii is expressed in metres (m).

NOTE 2 **Depth for maximum** *pii* is termed "depth for peak pulse-intensity integral" in IEC 60601-2-37:2007/AMD1:2015.

NOTE 3 At this depth the acoustic working frequency is determined.

3.27 Dia ana f

Discrete-perating mode

Replace the term "Discrete-perating mode" by "discrete-operating mode".

Replace, in the definition, "ultrasonic diagnostic equipment" by "medical diagnostic ultrasonic equipment".

3.28

equivalent aperture diameter

Replace the existing definition and equation by the following new definition and equation:

diameter of a circle the area A of which is the -12 dB output beam area A_{ob} for non-scanning modes and the -12 dB scanned aperture area A_{sa} for scanning modes, given by

$$D_{\rm eq} = \sqrt{\frac{4}{\pi} A} \tag{8}$$

Replace the existing NOTE 1 by the following new note:

NOTE 1 Equation (8) is used in the calculation of the **cranial-bone thermal index**; for **non-scanning modes** with $A = A_{ob}$ and for **scanning modes** with $A = A_{sa}$.

Add new NOTE 2:

NOTE 2 Equation (8) with $A = A_{ob}$ is also used in calculating the **break-point depth**.

Replace "NOTE 2" by "NOTE 3". CUM entire review

3.33

medical diagnostic ultrasonic equipment 2010/AMD1:2017

Add new NOTE 2:

NOTE 2 IEC 60601-2-37:2007 uses the term "ultrasonic diagnostic equipment" instead of **medical diagnostic ultrasonic equipment**.

3.34

non-scanning mode

Replace, in the definition, the words "ultrasonic diagnostic equipment" by "medical diagnostic ultrasonic equipment".

3.37

output power

Replace, in the source, "IEC 61161:2006" by "IEC 61161:2013".

3.40

prudent-use statements

Replace the existing definition by the following new definition:

affirmations of the principle that only necessary clinical information should be acquired and that high exposure levels and long exposure times should be avoided

IEC 62359:2010/AMD1:2017 © IEC 2017

3.44 pulse repetition period

Add new NOTE 1:

NOTE 1 In general, for **non-scanning modes** the **pulse repetition period** needs to be adjusted to represent a 'per-second' average taking into account interruptions-in, or non-constant, pulsing; e.g. such as may occur in **combined operating modes**.

Replace "NOTE" by "NOTE 2".

3.49

scanning mode

Replace, in the definition, the words "an ultrasonic diagnostic equipment" by "a medical diagnostic ultrasonic equipment".

3.54

spatial-peak temporal-average intensity

Replace the existing NOTE 1 by the following new note:

NOTE 1 For systems in **combined-operating modes**, the averaging time period needs to be sufficient to include periods in which scanning or pulsing is interrupted.

3.56

thermal index

Replace, in the definition, the two occurrences of the words " attenuated acoustic power" by "attenuated output power"

Add the following new definitions:

3.61

instantaneous acoustic pressure

p(t) IEC 62359:2010/AMD1:2017

pressure minus the ambient pressure at a particular instant in time and at a particular point in an acoustic field

NOTE Instantaneous acoustic pressure is expressed in pascals (Pa).

[SOURCE: IEC 62127-1:2007, 3.33, modified – The reference to IEV 801-01-19 has been removed in the definition]

3.62

attenuated instantaneous acoustic pressure

 $p_{\alpha}(z,t)$

value of the **instantaneous acoustic pressure** at time t after attenuation on a plane perpendicular to the **beam axis** at a specified distance z from the source, and given by

$$p_{\alpha}(z,t) = p(z,t) 10^{(-\alpha \, z \, f_{\text{awf}}/20 \, \text{dB})}$$
(26)

where

 α is the acoustic attenuation coefficient;

z is the distance from the source to the point (plane) of interest;

*f*_{awf} is the acoustic working frequency;

p(z,t) is the instantaneous acoustic pressure

NOTE Attenuated instantaneous acoustic pressure is expressed in pascals (Pa).

3.63 attenuated pulse-pressure-squared integral

 $ppsi_a(z)$

time integral of the square of the **attenuated instantaneous acoustic pressure**, integrated over the acoustic pulse waveform, on a plane perpendicular to the **beam axis** at a specified distance z in an acoustic field

$$ppsi_{\alpha}(z) = \int p_{\alpha}^{2}(z,t)dt = \int \left[p(z,t) 10^{\left(-\alpha z f_{awf}/20 \text{ dB}\right)} \right]^{2} dt = ppsi(z) \times 10^{\left(-\alpha z f_{awf}/10 \text{ dB}\right)}$$
(27)

where

p(z,t) is the **instantaneous acoustic pressure** at depth *z*.

 α is the acoustic attenuation coefficient;

z is the distance from the source to the point (plane) of interest;

 f_{awf} is the acoustic working frequency;

ppsi is the **pulse-pressure-squared integral**

NOTE 1 Attenuated pulse-pressure-squared integral is expressed in pascal squared seconds (Pa²s).

NOTE 2 See definition 3.43 for the non-attenuated version; with the addition here of the perpendicular plane at depth z.

3.64

attenuated scan intensity integral h Standards

 $sii_{\alpha}(z)$

sum of the attenuated pulse intensity integrals in one scan (one frame of ultrasonic scan lines) at depth z

NOTE 1 Attenuated scan intensity integral is expressed in joules per square metre (Jm⁻²).

NOTE 2 For measurement purposes of this standard, $sii_a(z)$ is equivalent to $1/(\rho c)$ times the **sum of attenuated pulse-pressure-squared integrals** at depth z, for $z \ge z_{bp}$, with ρc denoting the characteristic acoustic impedance of pure water.

tandards.iteh.ai/catalog/standards/iec/ec88228f-c130-4b67-a1ee-071d05236ca3/iec-62359-2010-amd1-2017 NOTE 3 See definition 3.79 for the non-attenuated version.

3.65

attenuated spatial-peak pulse-average intensity

 $I_{\text{sppa.}a}(z)$

maximum value of the **spatial-peak pulse-average intensity** after attenuation, on a plane perpendicular to the **beam axis** at a specified distance *z* from the source, and given by

$$I_{\text{sppa},\alpha}(z) = \frac{1}{t_{d}(z)} pii_{\alpha}(z)$$
(28)

where

 $t_d(z)$ is the **pulse duration** at the same depth z;

 $pii_a(z)$ is the attenuated pulse-intensity integral at depth z

NOTE 1 Attenuated spatial-peak pulse-average intensity is expressed in watts per square metre (Wm⁻²).

NOTE 2 For measurement purposes of this standard, $pii_a(z)$ is equivalent to $1/(\rho c)$ times the **attenuated pulse-pressure-squared integrals** at depth z, $ppsi_a(z)$, for $z \ge z_{bp}$, with ρc denoting the characteristic acoustic impedance of pure water.

NOTE 3 See definition 3.81 for the non-attenuated version.

attenuated sum of pulse-pressure-squared integrals

s_appsi (z)

3.66

attenuated value of the sum of pulse-pressure-squared integrals in one scan (one frame of ultrasonic scan lines) at depth z

NOTE 1 Attenuated sum of pulse-pressure-squared integrals is expressed in pascal squared seconds (Pa²s).

NOTE 2 The attenuated sum of pulse-pressure-squared integrals at depth z will be equal to the sum of attenuated pulse-pressure-squared integrals if each ultrasonic scan line in the frame which is included in the sum has the same acoustic working frequency.

NOTE 3 See F.3.1.4.2 for additional explanation.

NOTE 4 See definition 3.83 for the non-attenuated version.

3.67

depth for maximum I_{sppa}

^zsppa,max

depth z on the beam axis and beyond the break-point depth z_{bp} of maximum spatial-peak pulse-average intensity

NOTE 1 Depth for maximum I_{sppa} is expressed in metres (m).

NOTE 2 This depth is equivalent to the depth for maximum pii.

3.68

depth for maximum $I_{sppa,a}$

^zsppa,α,max depth z on the beam axis and beyond the break-point depth z_{bp} of maximum attenuated spatial-peak pulse-average intensity

Preview NOTE 1 Depth for maximum $I_{sppa,\alpha}$ is expressed in metres (m).

NOTE 2 This depth is equivalent to the **depth for maximum** pii_{a} .

3.69 depth for maximum I_{spta}

^zspta,max

depth z on the beam axis and beyond the break-point depth z_{bp} of maximum spatial-peak temporal-average intensity

NOTE 1 Depth for maximum I_{spta} is expressed in metres (m).

NOTE 2 For non-scanning modes, this depth is equivalent to the depth for maximum pii. For scanning modes, it is equivalent to the depth for maximum sii.

3.70

depth for maximum $I_{spta,a}$

^Zspta,α,max

depth z on the beam axis and beyond the break-point depth z_{bp} of maximum attenuated spatial-peak temporal-average intensity

NOTE 1 **Depth for maximum** $I_{spta,\alpha}$ is expressed in metres (m).

NOTE 2 For non-scanning modes, this depth is equivalent to the depth for maximum pila. For scanning modes, it is equivalent to the depth for maximum sii_a.

3.71

depth for maximum pii_a

 $z_{pii,a}$ depth z on the **beam axis** and beyond the **break-point depth** z_{bp} of maximum **attenuated** pulse-intensity integral