INTERNATIONAL ISO/IEC
STANDARD 12088-4

First edition
1995-12-15

Information technology — Computer
graphics and image processing — Image
processing and interchange — Application
program interface language bindings —

Part 4:
C

Technologies de I'information — Infographie et traitement de I'image —
Traitement et échange de I'image — Liants de langage d'interface de
programme d'application —

Partie 4: C
solIEC
Iso Reference number
ke g o ISO/IEC 12088-4:1995(E)

ISO/TEC 12088-4:1995(E)

Contents

Contents
T SCOPE ...ttt ettt 1
2 NOIMALVE TEIETEIICES.ceiiiiiiiiiiti ettt 2
3 The C language binding of the Image Processing and Interchange Standard......................c................... 3
3.1 Classification and desigNAtion.ocooieiieiiiiiiiieeceeceeee e 3
3.2 FUNCHONS VEISUS TACTOSouttirieuiatttiaiettetteteeesteseescseeseseeseeeeeeeseeeeeeeseeeeeeeeeeeeeeeeeeeeeneee e 3
3.3 Implications of the JaNGUAGEcoooiiiiiiiieeieeeeeeeee e 4
3.3.1 CharaCter SETIMEScc.eieuiitiieiiet ittt ettt et ettt ettt et e e e ee e eeee e ee et eeeeee et eeeeeeeeeeee s e 4
3.3.2 Implementation dePENdEnCIES................cuiieuiiiuiieieieeieeee e 4
3.3.3 Data ObJECt TEPOSILOTYeviuiiuiictietiieiet ettt e 4
3.4 Identifier MAPPINEc.ooioiiiiiiieeeeeeee e 5
3.5 REMUIT VAIUES ...ttt 6
3.6 HEAACT fIIES........oeeiie e 6
3.7 MemOTY MANAZEIMENEo.oiuiitiiiiiiietieteieiete ettt ettt ettt ettt ee et e s oot e e ee e, 7
3BEmOr handling............ocoiiiiiiiiiiee e 9
3.8.1 Application defined error handlerscoooiiiiiii e 9
3.8.2 Function identification.ooooiiiiiii e, 9
3.8.3 EITOT PrESEIEAtION.ouiiuiiiiitiietiete ettt ettt e e e 9
3.9 Virtual T€GISIEr SUPPOTLcoeiuiiiiiiiiiieietieee e e, 10
3.10 Convenience fUNCHONSoc.oiiiieiiietit et 10
3.11 Program €XAMPIESccooiiiiiiiiiiiiiiiit ettt ettt e e 10
BTADIES ...ttt ettt ettt ettt e e en e 11
4. hiAbbreviationsds.feh. a)/catalogistandards/sist/ 1 0a360co-0aa8-484.3-241c-aflafaal s / 1, 11
4.1.1 Table 0f @bDIEVIALIONS.cooiiiiiiiiiii oot 11
4.1.2 Abbreviation policy in construction of identifiers.coocoovoioooo 14
4.2 FUNCHON NAMES. ...ttt et ee e, 15
4.2.1 Alphabetical by function NAMEcoooiiiiiii oo 15
4.2.2 Alphabetical by bound name.oooioiiii e 27
5 Data type definitionsc.ocooiiiiiiiiiiii . 39
5.1 Mapping of AAta LYPES.......coveuiieieieieie e 39
5.2 Environment data type definitions.ocooooiiiio e 40
5.2.1 External physical image data tyPeSooooiimioeoeeeeeeeee e 40
5.2.2 BasiC parameter data tYPES..............o.eouiiuieeeeee et 41
5.2.2.1 IPI-PIKS parameter data tyPesc.ocooveioiomieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 41
5.2.2.2 IPI-IIF parameter data tyPESccooveuiuiieeiitieceeee e 41
5.2.3 Data object IAentifiers.............oooviiieioiieoecee e 42
5.2.3.1 IPI-PIKS object identifiers.cooooioioiiiiieo e 42
5.2.3.2 IPI-IIF object identificationoooiiiiiiieeee e 43
5.3 Implementation dependent data type definitions.........................o.ocooiivimeiiieoeeeee e 44
5.4 Implementation independent data type definitions........................o.ocoovoveooeee 45
5.4.1 Enumerated data type definitions....................ocoooiiiiiii i 45
5.4.1.1 IPI-PIKS enumerated data type definitions.....................ccoooooeoioooeoeeee 45
5.4.1.2 IPI-IIF enumerated data type defimitions...........................oooiiiieeeeeee 50

© ISO/IEC 1995

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or
utilized in any form or by any means, electronic or mechanical, including protocopying and
microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office Case postale 56 ¢ CH-1211 Geneve 20 o Switzerland
Printed in Switzerland

i

© ISO/IEC ISO/IEC 12088-4:1995(E)

Contents

5.4.2 Union data type AEfIMIONSrirrrisssssssssssss s 51
5421 IPI-PIKS union data type definitionsocovvwmrssruumssssmmmsssssnsssesmms st 51

5 4.2.2 TPI-IIF union type data definitions.........oocvuurrmmrismsssmssasssmsssssss s s 66

5 4.3 Structure data type EfIMItONScc..oorrvvsirimsemmmssrsistesess s 68
5.4.3.1 TPI-PIKS SIUCKUIES «....ooorvussneressssromssrssssssssssss om0 68
5.4.3.2 TPI-IIF SLTUCHITEScovoooevssssersssssessmssssssssss s TS 83

6 MACTO AERIIEIONS «....vevesesssseeeeesssssssssssssssssosssssssssss s 87
6.1 Unbounded OPHON and SLALES COAESoovwwmvwssssssserssmmssssssssss s 87
6.1.1 IPI-PIKS unbounded option and status COAES oo oveereeeeeeesesesseneecnensanames s san s 87
6.1.2 IPI-IIF unbounded option and status COES. . evnveveeeeeeeeeseseseeeaeseassenssnssess sttt 101
6.2 TPI-IIF SYTHAX AESCTIPLOTS.....oovvsssseessssssssssssssssssssssssssssssssss s 103
6.2.1 IPI-IIF SYMEAX GIHLY TYPES.....covssssssrrrrssssssssssssssssssssssssss s 103
6.2.2 TPI-IIF SYMEAX COMPORMEIISoecovesssreresesssssssssssssssssssssssss s e 107
6.3 FUNCHON AESCTIPIOTS. . --vceeeererssssssseesomsssssssssssssssss T 123
6.3.1 TPI-PIKS fUnCHON AESCTIPLOTSrvveserumsssesssssomsssssssssssssss s e 123
6.3.2 IPI-PIKS convenience function RIS a1 10 JURIRRERRRREREREREE TS S 135
6.3.3 IPI-IIF fUnction AESCTIPLOTS.ooereemsssrsssssssssmssss s s 136
6.3.4 IPI-IIF convenience function ESCIIPLOTS.coouusrussesessssssssssssemessmm s e 137
6.4 EITOT QESCTIPLOTS ... reeeesssnrersessssssseersssssss s 138
6.4.1 IPI-PIKS €ITOTS. ..oo.ccoreeruesssnrsssssesesssssses st s 138
6.4.2 TPI-IIF €ITOTSoovranrencennennnesunees TSSO OO et 143
6.8.3 SYSEIM @ITOTS....rcccoresrssssssssssessmesssessas s s 145
6.4.4 BiNAING-SPECITIC ETTOTS ...ooovvevvvvsuusnrsersssssssssssss s 145
6.5 Implementation-specific R LS 1 RSN ER RS 146
6.6 REPOSIOTY OBJECE AESCIIPHOTSocovorrresesssssssnsssmsssssss s 147
6.6.1 Repository impulse response FUNCHON ATTAYS ...cvovevensrseseessmsonsssessssassasimsases s 147
6.6.2 REPOSHOTY GItHET ATTAYS....cccovossssrsssssssssssssosssssssssssssssss s 149
6.6.3 Repository colour conversion INMALTICES .o eveeeeeeseseseseseseuemamemsssc s s s s 149

7 C FUNCHONAL BETMENLS.rveeeeesaesosssssssseromssssss s 155
7 1 NOLRHONAL COMVEIIIONScooreereeessssseesomssssssssssesssssss s 155
7 2 IPI-PIKS functional element PrOLOLYPESovuuusssesmmsssssrsnssssssmmsssssnssssssemms s s 156
7 3 IPI-IIF functional eleMent PIOIOTYPESrrvvrssssesmmsssssssssssssmmsssssssssessomms s e 273
8 CONVEMIENCE TUNCHOMServeeveeseenrsssssssesesosssssssssssssssss s 282
8.1 IPI-PIKS CONVEMENCE FUMCHOMScovovvusssssrnssssssrmmmsssssssssss s s s 282
8.1.1 1MAZE PrEPAration FUNCHOMSo...errsssssssssssssssrsssssssssssmmmmss s s 282
8.1.1.1 Prepare_COIOUT_IMAZEuusmussssssessssssssssssssssmsinsss s 283
8.1.1.2 prepare_monochrome_image .. 284
8.1.1.3 create_unbounded iMAge COPYwswrreeersrosssssssssssssssssssssssssss st 285

8.1.2 ROT CTEAtON FUNCHODS. ..rvevoerrvvssserrsssermssssssssssssossss s s 287
8.12.1 generate_2d_roi_rectangular ... 288
8.1.2.2 GENETALE_TOL_COOTIALE ..ocooosssssssssssssssssssssssssmssss s 289
8.1.2.3 generate_T0i_EMHPHCAL.....oooooooririssssssssssssssssssssssmsmmssssssssss s 290
8.1.2.4 EENETAte_TOL_POLYBOM ...cvvvuvmummmssssssssssssssss s 291
8.1.2.5 generate_TOL_TECHANGUIAT.........cooovviissismmmsmmsssssnmmsss s 293
8.1.2.6 prepare_2d_T0i_TECLANGUIAToooooososiosssmmsssmsssssmmssssssssss s 294
81,27 PIEPATE_TOL.ooccerrrerrrsssssssssssssssssss s 295

8.1.3 Tuple EMETAtON FUMCHOMS ..orcooorsssssssvsvsmmsmsrssssssssssssssmsssssss s 296
8.1.3.1 generate_NA_1 TUPLE ...oovvvrerrrssssssssmssmmsssssssssssss s 297
8.1.3.2 generate_nd_3_mple..4.......................................' 298
8.1.3.3 generate_nd_4 TPLE ..ocoocoooommmmvmmmmmsmmmmmsssssssssssmms s 299
8.1.3.4 generate_nd_5_TUPIEoooooooooiirrissssssssssssssssmss 300
8.1.3.5 GENErate_TA_3_TUPLE...cooooeeoosissssssssss s 301
8.1.3.6 GENErate_TA_4 TUPLE....oooooiooveiimssrressmsmmmmmssssssssssssmessss s 302
8.1.3.7 generate_rd_S_mple .. 303

ISO/TEC 12088-4:1995(F) © 1ISONEC
Contents

8.13.8 generate_sd_l_tuplc.‘.,.A.A._M......_M....,.“A...A..‘.H.A................,_...A4.4....“....‘,_4.....‘...,‘“3()4
8.1.3.9 generate_SA_3_TUPIC.........ocoo i 305
8.1.3.10 generate_sd_4 TUPIC..........cooiiiiii 306
8.1.3.11 generate SA_S_tUPIC.........oooiiiiiii i 307
8.1.4 Tiled image import and EXDOT. ..o oo 308
8.1.4.1 tiled_IMAZE CXPOTL.......o.i ittt 308
8.1.4.2 tiled IMAGE IMPOTL......oiiuiiiiii it 309
8.2 IPI-IIF conveniCnee fUNCHIONS oot 310
8.2.1 Attach entity FUNCHOMS.o.oiiiiiiiieit et 310
B2 L L A ACK .o 310
8.2.12 attach_sequence’sl()
8.2.1.3 attach. SEQUENCE ENA o oot 311
8.2.2 Create identifier funCHOMoooiiiiii 311
8.2.3 Get entity component fUNCHONS ... 312
8.2.3.1 el COMPOMEII.......iiuiiiiie ittt 312
8.2.3.2 get_SeqUENCE_COMPONETIEouiiiiiiis ittt ettt 312
8.2.4 Get entity value FUNCHONS ..ot D13
8.2.4.1 get_entity DOOLCAM ...t 313
8.2.4.2 get NEILY ANMECEEToiuiiiiiiiii it 314
8.2.4.3 get @MY TEAN ..ottt 314
8.2.4.4 et ENHILY SEIIEo.iiiiitiiiiiii i 314
8.2.4.5 get_SEQUENCE DOOICAMouiiiiii ittt 314
8246 get_sequence_integer.......,H.w...‘..‘.A......,.,.A.A.....,,,4.........‘,H......._.._,A........‘.._....._..A...315
8.2.4.7 get_sequence_Teal ... e 315
8248 get_sequence_string...W.A...........4..4......‘.4.....m.“....4..“‘“..“......‘_4.4......,A............A.A..,A315
8.2.4.9 get SCQUENCE_CIIoouiiiiiiiiiieie ittt 316
8.2.5 Put entity value fUNCHONS.oooiiii i 317
8.2.5.1 PUL_ENHIY_DOOICAI ...t 318
8.2.5.2 PUt_CNMLY IMECEET ..o oo D18
8.2.5.3 PUL_EMHLY_TEAL......oooiiiiiiiiii e 318
8.2.5.4 PUL_CIEILY_SETAIZoeeiie oo 319
8.2.5.5 put_SEQUENCE _DOOICAM ...ttt 319
8.2.5.6 PUL_SEQUENCE_IMICECT ...ttt 319
8.2.5.7 Put_SEQUENCE TEAL...........oivviiieiiiiiiecieeeeeeeeeece s 320
8.2.5.8 PUL_SEQUENCE_SUTIIEoouiiiiiiiii it 320
Annexes
A MEMOTY TANAZEINCIIL ..ottt ea ettt eea e s e e s ee e Lo 321
AT IIETOAUCHION ..ot et et e 321
A.2 Functions that import the application data to the implementation memory 323
A.3 Functions that export the implementation data to the application Memory.................c.ccooooen. 325
B Macros, data types in compilation order and external funCtions ... 327
B.1 IPI-PIKS macros. types and fUnCHioNS.ccooiiiiiiiiiiiie s 327
B.1.1 Macro defilItIONScooiii oottt et e 327
B.1.2 Data types in compilation OTAET......... ..o 367
BL1.3 FUNCHOMNSttt 390
B.1.4 CONvenience fUNCHONSooii ittt 475
B.2 IPI-IIF macros. types and funCtionscc.ooiiii i 480
B.2.1 Macro definItIONSoooeii ittt 480
B.2.2 Data types in compilation OTAET...............occooiiiiiiiii 499
BL2.3 FUNCHONS ...t e oo 504
B.2.4 Convenience fUNCHOMSocviiiiieieieeeiee ettt ettt e et et e n e e e 510

v

© ISO/IEC ISO/TEC 12088-4:1995(E)

Contents

€ SAMIPIC PIOGTATIIS. ...ttt 513
C.1 IPI-PIKSS application €XamPICS.............ccooiiiiiiiiiiii e 513
C.1.1 Application use of IPI-PIKS for memorv-managed image import/exportc......... 514

C.1.2 HiStOZram SENETAtION.ooiiiiiiieiiie ittt ettt 519

C.1.3 Region of interest CONIOl..............ooooiiiiiiieicie e D23

C.1.4 Simulated unsharp mask OPETatioN..............ocoiiiiiiiii et 526

C.1.5 Demonstration of asvnchronous and chained application..............cccooceoiocicicicnne.. . 531
C.1.5.1 Image blend by svnchronous. unchained functional representation............................ 531

C.1.5.2 Image blend by asvnchronous functional representation.................cccooieviiiiiiiicannnn, 533

C.1.5.3 Image blend by chained functional representation..................ccocovoeiiiiiiiiiiaien, 537

C.2 TPI-TIF application @XAMIPICottt 541

D Macros for short function identifiers........................iiiiiiiiieceeee e 930
IO e 562

ISO/TEC 12088-4:1995(E) © ISONEC
Contents

List of figures

1 - Buffered memory management of InlmportImage(...) ... 324
2 - Buffered memory management of InExportImage(...)............ccoccoooovioiiiiiiiiiceeen. 326
List of tables

1 DAta tVPE PIEIIXES.eiiiiiiiiieee ettt e et 5
2 ADDTEVIALIONS ...ttt 11
3 Function names alphabetical by function Name...................ocoooiiiiiiiiiii e 15
4 Function names alphabetical by bound name........................o.cooooiiiiii e 27
S DALA EYPES ..ot 39
6 TPI-PIKSS function deSCIIPLOTScviiiiieeieeieeeee e 123
7 IPI-PIKS convenience function deSCHPLOTS...........c.ooiiiiiiiieieeieeee e 135
8 TPI-IIF function dESCIIPLOTSc.iiiiiiiiiiiti et 136
9 IPI-IIF convenience function deSCTiPtOTSc.oooviiiiiie oo 137
10 TPI-PIKS €ITOT dESCTIPLOTS ... 138
11 TPI-IIF @ITOT AESCTIPLOTS. ..ot 143
12 SYStem €rTOT AESCTIPLOTSooiiiiieiiiiiie ettt 145
13 Binding-specific €ITOr AeSCIIPLOTSoouiiiiiiiiiie e 145
14 TPI-PIKS data Iengths. ..o 146
15 Repository impulse response function array descriptors ... 147
16 Repository dither array INAICESooooiiiiiiiiii i, 149
17 Repository colour conversion matrixX indiCes.......................ii e 149

Vi

© ISO/IEC ISO/IEC 12088-4:1995(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Com-
mission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees estab-
lished by the respective organization to deal with particular fields of technical activity. ISO and IEC tech-
nical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1. Draft international Standards adopted by the joint technical committee are circulated to
national bodies for voting. Publication as an International Standard requires approval by at least 75 % of
the national bodies casting a vote.

International Standard ISO/IEC 12088-4 was prepared by Joint Technical Committee ISO/IEC JTC 1, In-
formation technology, Subcommittee SC 24, Computer graphics and image processing.

ISO/IEC 12088 consists of the following part, under the general title Information technology — Computer
graphics and image processing — Image processing and interchange — Application program interface
language bindings:

— Part4:C

Other parts may follow.

Annexes A to D of this part of ISO/IEC 12088 are for information only.

vil

ISO/IEC 12088-4:1995(E) © ISO/IEC

Introduction

The Image Processing and Interchange (IPI) functional specification. ISO/IEC 12087. upon which this
binding is based. emerged as an International Standard in 1994. It consists of three parts: Part 1:
Common Architecture for Imaging (IPI-CAI). Part 2: Programmer's Imaging Kernel Svstem (IPI-PIKS)
Application Program Interface and Part 3: Image Interchange Facilitv (IPI-IIF).

The functional description of ISO/IEC 12088 is specified in a language independent manner and needs
to be embedded in language dependent layers (language bindings) for use with particular programming
languages.

The purpose of this part of ISO/IEC 12088 is to define a standard binding for the Image Processing and
Interchange Standard in the C programming language.

viil

INTERNATIONAL STANDARD © ISO/IEC ISO/TEC 12088-4:1995(E)

Information technology — Computer graphics and image
processing — Image processing and interchange —
Application program interface language bindings —

Part 4:
C

1 Scope

ISO/IEC 12087 consists of the three parts which define the functional aspects of this part of ISO/IEC
12088. The Common Architecture for Imaging (IPI-CAI) defines the overall architecture. The
Programmer's Imaging Kernel System (IPI-PIKS) and the Image Interchange Facility (IPI-IIF) each
specify a language independent. image processing Application Program Interface (API) within the Image
Processing and Interchange Standard. Either API may be implemented independently or both may be
combined in one implementation. For integration into a programming language. IPI-PIKS and IPI-TIIF
APIs are embedded in a language dependent laver obeving the particular conventions of that language.
This part of ISO/IEC 12088 specifies such a language dependent laver for the C language.

ISO/TEC 12088-4:1995(F) © ISONEC

2 Normative references

The following standards contain provisions which. through reference in this text. constitute provisions of
this part of ISO/IEC 12088. At the time of publication. the editions indicated were valid. All standards
are subject to revision. and parties to agreements based on this part of ISO/IEC 12088 are encouraged to
investigate the possibility of applving the most recent editions of the standards indicated below. Members
of IEC and ISO maintain registers of currently valid International Standards.

[1] ISO/IEC 12087-1:1995. Information technology - Computer graphics and image processing - Image
Processing and Interchange (IPI) - Functional specification - Part 1: Common architecture for imaging.

[2] ISO/IEC 12087-2:1994. Information technology - Computer graphics and image processing - Image
Processing and Interchange (IP) - Functional specification - Part 2: Programmer's imaging kernel
system application programme interface.

[3] ISO/IEC 12087-3:1995, Information technology - Computer graphics and image processing - Image
Processing and Interchange (IPI) - Functional specification - Part 3: Imaging Interchange Facility

(1IF).

[4] ISO/IEC 9899:1990. Programming Languages - C.

© ISO/IEC ISO/TEC 12088-4:1995(E)
The C language binding of the Image Processing and Interchange Standard

3 The C language binding of the Image Processing and Interchange
Standard

3.1 Classification and designation

This part of ISO/IEC 12088 incorporates the rules of conformance defined in the Image Processing and
Interchange Standard (ISO/IEC 12087) for implementations. with those additional requirements
specifically defined for C language implementations of the Standard.

‘The following criteria shall determine conformance of an implementation of this part of ISO/IEC 12088:

In order to conform, development of a C language implementation of the Image Processing and
Interchange Standard shall implement one or more specific profiles as specified in the functional
specification of ISO/IEC 12087. Independent implementation of the Programmer's Imaging Kernel
System (Part 2 of ISO/IEC 12087 including relevant portions of Part 1) or the Image Interchange
Facility (Part 3 of ISO/IEC 12087 including relevant portions of Part 1) is allowed.

The implementation shall make visible all of the declarations in the C binding specified in this part of
ISO/IEC 12088 for that same level of ISO/IEC 12087 and all lower levels and for a specific level of
the C language. Thus. for example. the syntax of the function names shall be precisely as specified in
the binding and parameters shall be of the data types stated in the binding.

This part of ISO/IEC 12088 supports the conformance profiles defined in the functional specification of
ISO/IEC 12087.
3.2 Functions versus macros

An implementation may substitute macros for functions. Implementation by macro should result in the
same effect as implementation by function including any side effects.

ISO/TEC 12088-4:1995(E) © ISO/TEC
The C language binding of the Image Processing and Interchange Standard

3.3 Implications of the language

3.3.1 Character strings

The C language represents character strings as an arrav of characters terminated by the null character
(i.e.. "\0"). Therefore. the null character is not usable as a printable character.

3.3.2 Implementation dependencies

There are a number of implementation issues which will affect the portability of application programs
emploving this part of ISO/IEC 12087. The application programmer should follow accepted practices for
ensuring the portability of C language programs to avoid introducing problems when recompiling the
application on another system.

This part of ISO/IEC 12088 attempts to avoid dependencies on computer specific tvpes which may vary
among computers. Clause 5 recommends tvpe mappings for common numeric tvpes. data object
identifiers, and precision to be used throughout this C language binding.

3.3.3 Data object repository

The Image Processing and Interchange Standard provides a repository of data objects for routinely used
objects. These objects are defined in ISO/IEC 12087. Access to these objects for their assignment to IPI-
PIKS operators is by IPI-PIKS-internal identifiers which may be acquired bv the execution of a
return_repository_id function presented in 7.2 of this part of ISO/IEC 12088.

The repository object identifiers are defined in 6.5. Each repositorv object name begins with the
characters "IR_".

© ISOMEC ISO/TEC 12088-4:1995(E)
The C language binding of the Image Processing and Interchange Standard

3.4 Identifier mapning

The IPI-PIKS-API and IPI-ITF-API function names are mapped to C identifiers beginning with the
sentinel "I" followed by a lower case name prefix which identifies the return parameter tvpe. Words and
phrases used in the function names are concatenated with and bevond the prefix and may be abbreviated
in the name representation. The acronyms and the first letter of name words and abbreviations are in
upper case and the remainder are in lower case. For example. the identifier of the IPI-PIKS import image
function. which returns an IPI-PIKS internal object identifier. is /n/mportimage.

Data tvpe clement names arc mapped to C identifiers beginning with the sentinel "I." The sentinel is
followed by a two-part prefix. which delincates the usage and tvpe of the element. followed by a name.
These usage and data type designators. sec Table 1. include “m” for external physical image pixel
representation. “p” for parameter representation and “d” for internal representation. For some data tvpes.
the type designator and name may be merged. e.g.. Ipint. the integer basic type. Acronyms. words and
phrases used in the tvpe names are in lower case. often abbreviated in the representation. and separated
with the underscore character. " ". For example. the union of pixel data types used for parameters is
Ipsparameter pixel.

Enumerated data tvpe constants and macro names are mapped to C identifiers beginning with the sentinel
"I" followed bv a word or abbreviation of the entity to which the identifier belongs and the name of the
identifier in upper case with acronvms. abbreviations or words separated with the underscore character,
" " For example the macro name for Boolean false is /BOOL FALSE.

Parameters arc mapped to C identifiers beginning with a prefix which identifies the type and/or usage.
Words and phrases used in the parameter and variable names are concatenated with and bevond the prefix
and may be abbreviated in the representation. The first letter of name words and abbreviations are in
upper case and the remainder are in lower case. Acronyms are presented in upper case. For example. the
name of the function parameter which denotes the identifier of a destination ROI object is nDestROI.

The prefix symbols used in this part of ISO/TEC 12088 are listed in Table 1.

Table 1 - Data type prefixes

Prefix Meaning
a array
b Boolean
¢ character
d internal data type
[enumerated data type
f function
i integer
m external image data tvpe
n identifier
P parameter type
real
S structurc
t pointer
u unsigned integer
v void
X complex
z zero termunated siring

ISO/TEC 12088-4:1995(E) © ISO/NEC
The C language binding of the Image Processing and Interchange Standard

The C language standard requires that compilers recognize internal identifiers which are distinct in at
least 31 characters. That standard also requires that external identifiers (i.e.. those seen by the linker) be
recognized to a minimum of six characters. independent of case. Implementations which must run in
environments which accept less than 31 characters in external identifiers must include a set of macros
(#defines) in the header file which equate the long names as defined in this document to a set of shorter
names which conform to the requirements of the implementation. An example of these shorter 6-
character names can be found in Annex D

3.5 Return values

Functional elements which perform a status test within the IPI-PIKS internal domain, and do not affect
destination data. output the Boolean result of the test as return value.

Destination identifiers or values are output as return values from elements which include destination
objects or values. respectively. as part of their parameter list, even if the identifier itself is input to the
element. If more than one destination object is identified by a function. no return value is output. Return
values are void from elements which do not provide destination objects or values.

If the destination identifier, output as a return value. is generated by the functional element. the parameter
represented by the return value is not included in the argument list of the functional element. Conversely,
if the same parameter appears in the argument list. the return value is a replication of an input of the
destination identifier. though the contents of the object may be modified by the function.

3.6 Header files

The C language provides a mechanism to allow external files to be included in a compilation. Clause 5 of
this part of ISO/IEC 12088 describes the data tvpes that shall be defined in the piks.h and iif h which
should be included in any application program that intends to use IPI-PIKS and/or IPI-IIF. respectively.
via the C language binding. Additional implementation-dependent items may be placed in these files if
needed and the files may be concatenated as one header file. These items should start with the sentinel
"I", as far as applicable.

The files piks.h and iif.h shall also contain external prototyvpes for all IPI-PIKS and IPI-IIF C language
functions. For example, the prototype for the IPI-PIKS function /nResize would appear as follows:

extern Idnimage InResize (/* OUT destination image identifier */
Idnimage nSourcelmage, /* source image identifier */
Idnimage nDestImage. /* destination image identifier */
Idntuple nDestSize /* destination size ND 5-tuple identifier */
).

Examples of piks.h and iif.h which utilize suggested data types are presented in Annex B.

© ISO/IEC ISO/IEC 12088-4:1995(E)
The C language binding of the Image Processing and Interchange Standard

3.7 Memory management

IPI-PIKS requires internal memory space. denoted by identifiers containing the letter "d" in their prefixes
(immediately following the sentinel) as they appear in this part of ISO/IEC 12088. Internal memory
requirements may exist in a memory domain independent of application memory or may be acquired from
application memory as provided in a specific implementation. ISO/IEC 12087 and this part of ISO/IEC
12088 do not provide functionality to support the allocation and management of IPI-PIKS internal
memory should it be acquired from the application domain.

Both IPI-IIF and IPI-PIKS require external memory space, denoted by identifiers containing the letter "p"
in their prefixes (immediately following the sentinel) as they appear in this part of ISO/IEC 12088.
External memory requirements must be acquired from application memory space. The application shall
allocate the external memory for the data provided to and returned by the implementation of the Image
Processing and Interchange Standard. The application will allocate C structures and pass the appropriate
identifiers of those structures to the requiring functional element, which will then place information into
or receive information from the structures. However, the application may provide data buffered in partial
amounts for large data objects input to the functions. Also, some functions return variable length data, the
length of which is not known a priori and can not be computed by the application.

If the memory space requirement is small, even if variable in length, the structure and sufficient space
must be provided by the application. As example, a B-tuple for colour image data precision specification
will contain no more than four data elements and, as such, is a small structure. A B-tuple for spectral
image data precision specification may contain many elements.

Functions which may receive buffered data and functions which return variable lengths of sizable data or
are considered to return potentially large amounts of fixed-length data are managed such that the
application can submit or receive buffered portions of the data. The data portion, or buffer, is a subset of
the implementation's internal data structure and is called the application's buffer. This allows the
application to process the implementation's data, considered as a single dimension array, in a piecewise
manner rather than all at once.

The application allocates the memory for its buffer and passes an identifier of that buffer to the
implementation. The implementation places the subset of data into the buffer according to the
specifications included among the function's parameters. In order to support this policy of memory
management, three additional parameters have been added to functions which may transfer buffered data:

a) iApplBufferSize: An integer input parameter which specifies the length of the application's buffer,
dimensioned in terms of the number of data elements of data type specified for the input or return.
The positive value of iApplBufferSize indicates the element count of the data which can be contained
in the application's buffer. A value of 0 is valid as input for this parameter and is useful to interrogate
the overall data size available for output or available in the implementation for input of each buffered
transfer operation. A negative value is valid for this parameter and is interpreted as a signal for
complete transfer of the data, the application being responsible to provide adequate space for the
complete data transfer from implementation to application or the complete data requirement for
transfer from application to implementation.

b) uStartPoint: An unsigned integer input parameter which is an element index offset into the
implementation's data space represented as a 1D array of data type specified for the external data
being transferred. uStartPoint of O represents the first element of both the implementation's and
application's data. Otherwise, uStartPoint is the index which indicates the element offset in the
implementation's data space where data transfer is to be initiated to or from the beginning of the
application's buffer. The transfer of data continues to the extent of the application's buffer or until
there are no more items to be transferred, whichever is least.

