

Edition 1.0 2021-07

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Measuring relays and protection equipment – Part 187-1: Functional requirements for differential protection – Restrained and unrestrained differential protection of motors, generators and transformers

Relais de mesure et dispositifs de protection –

Partie 187-1: Exigences fonctionnelles pour la protection différentielle – Protection différentielle avec et sans caractéristique de retenue des moteurs, générateurs et transformateurs

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2021 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC online collection - oc.iec.ch

Discover our powerful search engine and read freely all the publications previews. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 18 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -

webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études, ...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

IEC online collection - oc.iec.ch

Découvrez notre puissant moteur de recherche et consultez gratuitement tous les aperçus des publications. Avec un abonnement, vous aurez toujours accès à un contenu à jour adapté à vos besoins.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 000 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Edition 1.0 2021-07

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Measuring relays and protection equipment – **CAREVIE** Part 187-1: Functional requirements for differential protection – Restrained and unrestrained differential protection of motors, generators and transformers

Relais de mesure et dispositifs de protection – Partie 187-1: Exigences fonctionnelles pour la protection différentielle – Protection différentielle avec et sans caractéristique de retenue des moteurs, générateurs et transformateurs

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 29.120.70

ISBN 978-2-8322-4044-1

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FC	DREWO	RD	. 11
1	Scop	e	. 13
2	Norm	ative references	. 14
3	Term	s and definitions	. 14
4	Spec	ification of the function	. 18
	4 1	General	18
	4.2	Input energizing quantities/energizing quantities	.19
	4.2.1	General	. 19
	4.2.2	Connections	. 19
	4.3	Binary input signals	. 19
	4.4	Functional logic	. 22
	4.4.1	General	. 22
	4.4.2	Phase biased differential protection	. 22
	4.4.3	Biased restricted earth fault protection	.24
	4.4.4	Compensation of energizing quantities	.25
	4.4.5	Additional restraint or blocking methods	. 26
	4.5	Binary output signals	. 27
	4.5.1	General	. 27
	4.5.2	Start (pick-up) signals	.27
	4.5.3	Operate (trip) signals	. 27
	4.5.4	Other output signals	. 27
	4.6	Additional influencing functions and conditions	.27
	4.6.1	General	. 27
	4.6.2	Operation during CT saturation	.28
	4.6.3	Switch onto fault 2002008e1/1ec-00203-18/-1-2021	.28
	4.6.4	Energizing quantity failure (CT supervision)	.28
	4.6.5	Off-nominal frequency operation	.28
_	4.6.6	Geomagnetically induced currents (GIC)	.28
5	Perfo	rmance specification	.29
	5.1	General	.29
	5.2	Effective and operating ranges	.29
	5.3	Steady state accuracy tests in the effective range	.29
	5.3.1		.29
	5.3.2	l'est related to the declared thermal withstand current	.30
	5.3.3		.30
	5.3.4	Ratio compensation accuracy	.30
	5.3.5	Zere acqueres compensation validity	اد. 21
	5.3.0		21
	5.3.7	Pasic accuracy of time delay settings	21
	530	Disengage time	. J I 21
	5.3.9	Dynamic performance in operating range	32
	5 <u>4</u> 1	General	. 32
	542	Typical operate time	. 32
	543	Relay stability for external faults	. 32
	544	Relay behaviour for internal fault preceded by an external fault	33
	5.5	Stability during magnetizing inrush conditions	33

	5.6	Stability during overexcitation conditions	33
	5.7	Presence of harmonics on load	33
	5.8	Performance during saturation of current transformers	33
	5.9	Behaviour of differential protection with digital interface for the energizing	
6	Funa	quantities	34
0	Func		34
	6.1	General	34
	6.2	Test related to the declared thermal withstand current	35
	6.3	Steady state accuracy tests in effective range	35
	6.3.1		35
	6.3.2	Basic characteristic accuracy	37
	6.3.3	Ratio (magnitude) compensation accuracy	
	6.3.4	Phase (vector) compensation validity	45
	6.3.5	Zero sequence compensation validity	47
	6.3.6	Harmonic restraint basic accuracy test under steady state conditions at nominal frequency	
	6.3.7	Accuracy related to time delay setting	
	6.3.8	Determination and reporting of the disengage time	
	6.4	Dynamic performance tests	
	6.4.1	General	
	6.4.2	Operate time for double infeed network model (restrained operation)	57
	6.4.3	Operate time for double infeed network model (unrestrained operation)	
	6.4.4	Operate time for radial single infeed network model (restrained	
	-	operation)	73
	6.4.5	Operate time for radial single infeed network model (unrestrained	
	616	operation)	86
	0.4.0	Stability for external faults //s-60255-187-1-202	09
	0.4.7	Palay behaviour for internal fault preceded by an external fault	90
	0.5	Conorol	∠11
	0.0.1	Application encoder and encoderational transformer differential	112
	0.5.2	Application specific considerations: transformer differential	Z
	0.0.3	Application specific considerations, blased restricted earth raut	115
	0.5.4	Application specific considerations: generator differential	119
	0.0.0	Stability during insuch conditions	122
	0.0		123
	0.0.1	Application encoder and encoderational transformer differential	123
	0.0.2	Stability during overavaitation conditions	120
	0.7		120
	0.7.1	Application encoder and encoderational transformer differential	120
	6.9	Performance with lead barmonics	120
	0.0	Coporal	133
	0.0.1	Application enceifie enceiderations: transformer differential	100
	0.0.Z	Application specific considerations: deparator or mater differential	127
	0.0.3	Application specific considerations: biased restricted earth fault	1/10
	0.0.4 6 2 5	Reporting	140
7	0.0.0	mentation requirements	1/12
I	UUUU		
	1.1	Type test report	143
	1.2		143

Annov A	(informative) Examples of phase (vector) compensation and zero sequence	
compensa	ation schemes	144
A.1	General	144
A.2	Y→d conversion	145
A.2.1	Current conversion	145
A.2.2	2 Three-phase fault at Y (star/wye) side	146
A.2.3	B Phase-phase fault at Y (star/wye) side	147
A.2.4	Single-phase fault at Y (star/wye) side	147
A.2.5	5 Three-phase fault at delta side	148
A.2.6	Phase-phase fault at delta side	149
A.2.7	Single-phase fault at delta side	149
A.2.8	Ratio between start currents under different fault types	152
A.3	$d \rightarrow Y$ conversion	152
A.3.1	Current conversion	152
A.3.2	2 Three-phase fault at Y (star/wye) side	153
A.3.3	B Phase-phase fault at Y (star/wye) side	153
A.3.4	Single-phase fault at Y (star/wye) side	153
A.3.5	5 Three-phase fault at delta side	154
A.3.6	Phase-phase fault at delta side	154
A.3.7	Single-phase fault at delta side	155
A.3.8	Ratio between start currents under different fault types	155
Annex B	(normative) Calculation of mean, median and mode	156
B.1	Mean	156
B.2	Median	156
B.3	Mode	156
B.4	Example:darda.itab.ai/aatalaa/atandarda/sist/74005607dd1.4004.b57b	156
Annex C	(normative) CT requirements Selfies.60255.187.1.2021	157
C 1	General	157
C.2	Transformer differential protection	161
C.2.*	1 General	161
C.2.2	2 Fault 1	161
C.2.3	3 Fault 2	162
C.2.4	4 Fault 3	162
C.3	Transformer restricted earth fault protection	163
C.3.1	۰ I General	163
C.3.2	2 Fault 1	163
C.3.3	3 Fault 2	164
C.3.4	4 Fault 3	164
C.4	Generator differential protection	165
C.4.	I General	165
C.4.2	2 Fault 2	165
C.4.3	3 Criteria and additional conditions	166
C.5	Motor differential protection	166
C.5.	I General	166
C.5.2	2 Fault 1	166
C.5.3	3 Criteria and additional conditions	166
C.5.4	4 Start of motor, security case	167
C.5.	5 Criteria and additional conditions	167
C.6	Reporting	167

Annex D(relays	informative) CT saturation and influence on the performance of differential	168
Annex E (protection	informative) Guidance on dimensioning of CTs for transformer differential	173
E.1	General	173
E.2	Example 1	174
E.2.1	General	174
E.2.2	Verification of CT1 – Internal fault	175
E.2.3	Verification of CT1 – External fault	175
E.2.4	Verification of CT2	176
E.3	Example 2	177
E.3.1	General	177
E.3.2	Dimensioning of CT1	178
E.3.3	Dimensioning of CT2	179
Annex F (requireme	informative) Examples of test procedures to determine CT sizing nts for differential protection	181
F.1	General	181
F.2	Test data	183
F.2.1	General	183
F.2.2	Network model for CT requirement tests for the transformer differential protection	183
F.2.3	Network model for CT requirement tests for the transformer restricted earth fault protection	187
F.3	CT data and CT models	189
F.4	Test summary	197
Annex G (normative) Ramping methods for testing basic characteristic accuracy	199
G.1	General	199
G.2	Pre-fault condition	199
G.3	Pseudo-continuous ramp	199
G.4	Ramp of shots	201
Annex H (informative) Example of COMTRADE file for an evolving fault test case	203
Annex I (r	normative) Definition of fault inception angle	204
Bibliograp	hy	205
Figure 1 -	- Explanatory diagram for start time, operate time and disengage time	17
Figure 2 -	· Simplified biased differential functional block diagram	18
Figure 3 -	Primary current reference direction	21
Figure 4 -	- Typical restrained element (biased) characteristic	23
Figure 5 -	Typical unrestrained element characteristic	23
Figure 6 - elements.	- Example of combined characteristic using restrained and unrestrained	24
Figure 7 -	Basic error of the operating characteristic	30
Figure 8 -	Example of an operating characteristic in the $I_{\text{DIFF}}/I_{\text{REST}}$ plane with a	
tolerance	band	37
Figure 9 -	- Test cases for differential characteristic basic accuracy	39
Figure 10	- Example of a differential characteristic with test lines "a" to "h"	40
Figure 11	- Machine differential protection	40
Figure 12	- Test sequence for basic characteristic accuracy	42

Figure 13 – Machine restricted earth fault protection	44
Figure 14 – Example for documenting the test results for differential relay characteristic	45
Figure 15 – Ratio (magnitude) compensation accuracy test	46
Figure 16 – Secondary three-phase and double-phase injection for Winding 1 (example)	47
Figure 17 – Secondary single-phase and three-phase injections for Winding 1 (example)	49
Figure 18 – Zero sequence current injection on the Y side of the transformer	50
Figure 19 – Zero sequence current injection on the delta side of the transformer	50
Figure 20 – Example of a rated frequency harmonic restraint characteristic with visualization of test lines	53
Figure 21 – Sequence of events for testing the disengage time	55
Figure 22 – Double infeed network model for operate time tests	58
Figure 23 – Test sequence for double infeed network model – Restrained operation (transformer)	62
Figure 24 – Double infeed network model for operate time tests	63
Figure 25 – Test sequence for double infeed network model – Restrained operation (REF)	66
Figure 26 – Double infeed network model for operate time tests	67
Figure 27 – Test sequence for double infeed network model – Restrained operation (generator)	70
Figure 28 – Test sequence for double infeed network model – Unrestrained operation (transformer)	73
Figure 29 – Single infeed network model for operate time tests	74
Figure 30 – Test sequence radial single infeed network model – Restrained operation	78
Figure 31 – Single infeed network model for operate time tests	79
Figure 32 – Test sequence for radial single infeed network – Restrained operation (generator)	82
Figure 33 – Single infeed network model for operate time tests	83
Figure 34 – Test sequence for radial single infeed network – Restrained operation (motor)	86
Figure 35 – Test sequence for radial single infeed network – Unrestrained operation	89
Figure 36 – Example of distribution of the operate time for one application	93
Figure 37 – Operate time as a function of the off-nominal frequency values (effective range is the specified range of ±10 % of nominal frequency)	95
Figure 38 – Operate time as a function of the off-nominal frequency values (accuracy range beyond the specified range of ± 10 % of nominal frequency	96
Figure 39 – Double infeed network model for stability tests	97
Figure 40 – Sequence of fault injection for stability due to external faults (transformer)	100
Figure 41 – Double infeed network model for stability tests	101
Figure 42 – Sequence of fault injection for stability due to external faults (REF)	104
Figure 43 – Double infeed network model for stability tests	105
Figure 44 – Sequence of fault injection for stability due to external faults (generator)	108
Figure 45 – Double infeed network model for stability tests	109
Figure 46 - Sequence of fault injection for stability due to external faults (motor)	112

Figure 47 – Double infeed network model for internal fault preceded by an external fault112
Figure 48 – Double infeed network model for internal fault preceded by an external fault test
Figure 49 – Double infeed network model for internal fault preceded by an external fault test
Figure 50 – Power transformer inrush current waveform
Figure 51 – Comparison of waveforms
Figure 52 – Connection for the relay when current is injected from Y winding126
Figure 53 – Connection for the relay when current is injected from delta winding 127
Figure 54 – Power transformer overexcitation current waveform injected from Y winding
Figure 55 – Overexcitation current waveform injected from delta winding
Figure 56 – Comparison of the waveforms injected from Y winding
Figure 57 – Comparison of the waveforms injected from delta winding131
Figure 58 – Three-phase overexcitation current waveform injected from Y winding
Figure 59 – Three-phase overexcitation current waveform injected from delta winding133
Figure 60 – Test with superimposed harmonics on load – Transformer protection
Figure 61 – Three-phase load current waveform on the Y side of the transformer with superimposed harmonics
Figure 62 – Three-phase load current waveforms on the delta side of the YNd1 transformer with superimposed harmonics
Figure 63 – Test with superimposed harmonics on load
Figure 64 - Test with superimposed harmonics on load - Restricted earth fault protection . 140
Figure A.1 – Example of a transformer
Figure A.2 – Current vectors
Figure A.3 – Three-phase injection at Y (star/wye) side
Figure A.4 – Phase-phase injection at Y (star/wye) side147
Figure A.5 – Single-phase injection at Y (star/wye) side148
Figure A.6 – Three-phase injection at delta side149
Figure A.7 – Phase-phase injection at delta side149
Figure A.8 – Internal single-phase fault at delta side with neutral grounding transformer in the system
Figure A.9 – Single-phase injection at delta side150
Figure A.10 – External single-phase fault at delta side with neutral grounding transformer inside protected zone
Figure C.1 – Fault positions to be considered for specifying the CT requirements
Figure C.2 – Fault positions to be considered for transformer differential protection161
Figure C.3 – Fault positions to be considered for the restricted earth fault protection163
Figure C.4 – External fault position to be considered for the generator differential protection
Figure C.5 – Internal fault position to be considered for the motor differential protection166
Figure D.1 – Fault positions to be considered for specifying the CT requirements
Figure D.2 – Additional fault position to be considered in case of summation of currents 170
Figure E.1 – Transformer differential relay example 1
Figure E.2 – Transformer differential relay example 2
Figure F.1 – Network models and fault positions for transformer differential protection 184

Figure F.2 – Network models and fault positions for transformer restricted earth fault protection	187
Figure F.3 – Excitation characteristic for the high-remanence basic CT	191
Figure F.4 – Magnetization curve for the high-remanence type basic CT	193
Figure F.5 – Secondary current at the limit of saturation caused by the AC component with no remanent flux in the CT	194
Figure F.6 – Secondary current in case of maximum DC offset	194
Figure F.7 – Excitation characteristics for non-remanence and high-remanence type basic CTs	196
Figure F.8 – Magnetization curve for non-remanence type basic CTs	197
Figure G.1 – Secondary injected currents for the simulation of a through load of 30 $\%$	200
Figure G.2 – Pseudo-continuous ramp in the restraining current – Differential current plane in the time domain	201
Figure G.3 – Ramp of shots showing differential step change and the time step	202
Figure G.4 – Ramp of shots with binary search algorithm	202
Figure I.1 – Graphical definition of fault inception angle	204
Table 1 – Example of effective and operating ranges of differential protection	29
Table 2 – Frequencies for steady state accuracy tests when the frequency effective range is equal to ± 5 % of nominal frequency	36
Table 3 – Frequencies for steady state accuracy tests when the frequency effective range is larger than ±5 % of nominal frequency	36
Table 4 – Example frequencies for steady state accuracy tests when the frequency effective range is narrower than ± 5 % of nominal frequency	36
Table 5 – Test points for differential characteristic basic accuracy	38
Table 6 – Test lines on the differential characteristic (Figure 10)	39
Table 7 – Basic characteristic accuracy	43
Table 8 – Example of start ratios resulting from phase (vector) compensation	47
Table 9 – Example of start ratios resulting from zero sequence compensation	50
Table 10 – Test points for rated frequency harmonic restraint	51
Table 11 – Reporting example of test results for harmonic restraint basic accuracy test .	52
Table 12 – Results of time delay tests	53
Table 13 – Reported time delay	53
Table 14 – Results of disengage time for all the tests	55
Table 15 – Frequencies for dynamic performance tests when the frequency operating range is equal to ± 10 % of nominal frequency	55
Table 16 – Frequencies for dynamic performance tests when the frequency operating range is wider than ± 10 % of nominal frequency	55
Table 17 – Example frequencies for dynamic performance tests when the frequency operating range is narrower than ± 10 % of nominal frequency	56
Table 18 – Double infeed network model	58
Table 19 – Source impedances for double infeed network model – Restrainedoperation (e.g. 50 Hz ± 10 % operating range)	59
Table 20 – Double infeed network model	62
Table 21 – Source impedances for double infeed network model – Restrainedoperation (e.g. 50 Hz ± 10 % operating range)	63
Table 22 – Double infeed network model	66

Table 23 – Source impedances for double infeed network model – Restrained operation (e.g. 50 Hz ± 10 % operating range)	67
Table 24 – Source impedances for double infeed network model – Unrestrainedoperation (e.g. 60 Hz ± 10 % operating range)	70
Table 25 – Single infeed network model	74
Table 26 – Source impedances for radial single infeed network model – Restrainedoperation (e.g. 50 Hz ± 10 % operating range)	74
Table 27 – Single infeed network model	78
Table 28 – Source impedances for radial single infeed network model – Restrainedoperation (e.g. 50 Hz ± 10 % operating range)	79
Table 29 – Single infeed network model	82
Table 30 – Source impedances for radial single infeed network model – Restrainedoperation (e.g. 50 Hz ± 10 % operating range)	83
Table 31 – Source impedances for radial single infeed network model – Unrestrained operation (e.g. 60 Hz ± 10 % operating range)	86
Table 32 – Fault statistics for typical operate time of transformer protection (nominal frequency only)	89
Table 33 – Fault statistics for typical operate time of biased restricted earth fault protection (nominal frequency only)	90
Table 34 – Fault statistics for typical operate time of generator protection (nominal frequency only)	90
Table 35 – Fault statistics for typical operate time of motor protection (nominal frequency only)	90
Table 36 – Operate time classes	91
Table 37 – Corresponding operate time classes	91
Table 38 – Number of operate times and percentage	92
Table 39 – Example of typical operate time at nominal frequency (mode, median, mean)	93
Table 40 – Examples of operate times (50 Hz nominal, CT configuration 500 A/1 A and 1 000 A/1 A, power transformer protection)	94
Table 41 – Double infeed network model	96
Table 42 – Source impedances for double infeed network model stability tests (e.g.50 Hz ± 10 % operating range)	97
Table 43 – Double infeed network model	100
Table 44 – Source impedances for double infeed network model stability tests (e.g. 50 Hz ± 10 % operating range)	101
Table 45 – Double infeed network model	104
Table 46 – Source impedances for double infeed network model stability tests (e.g. 50 Hz ± 10 % operating range)	105
Table 47 – Double infeed network model	108
Table 48 – Source impedances for double infeed network model stability tests (e.g. 50 Hz ± 10 % operating range)	109
Table 49 – Double infeed network model	113
Table 50 – Source impedances, fault resistances and pre-fault conditions for internal fault preceded by an external fault (e.g. for 50 Hz power system frequency)	113
Table 51 – Double infeed network model	116
Table 52 – Source impedances, fault resistances and pre-fault conditions for internal fault preceded by an external fault tests (e.g. for 50 Hz power system frequency)	117
Table 53 – Double infeed network model	120

Table 54 – Source impedances, fault resistances and pre-fault conditions for internal fault preceded by an external fault tests (e.g. for 50 Hz power system frequency)	120
Table 55 – Operate time for internal fault preceded by an external fault and for internalfault when the relay always operated	122
Table 56 – Operate time for internal fault preceded by an external fault and for internal fault when the relay did not always operate	123
Table 57 – Coefficients of the inrush current waveforms	124
Table 58 – Nameplate data for test-transformers	125
Table 59 – Parameter <i>k</i> values	125
Table 60 – Coefficient of the overexcitation waveforms	130
Table 61 – Test data for the transformer	131
Table 62 – Transformer data for the superimposed harmonics on load test	134
Table 63 – Fundamental component of load current in pu	134
Table 64 – Harmonic content for superimposed harmonics on load test	134
Table 65 – Harmonic phase angles for superimposed harmonics on load test	134
Table 66 – Generator or motor data for the superimposed harmonics on load test	138
Table 67 – Harmonic phase angles for superimposed harmonics on load test	139
Table 68 – Transformer data for the superimposed harmonics on load test	141
Table 69 – Harmonic phase angles for superimposed harmonics on load test	141
Table A.1 – Transformer data	144
Table A.2 – Start currents under different fault types	152
Table A.3 – Start currents under different fault types	155
Table C.1 – Levels of remanent or remaining flux to be considered for external faults	159
Table C.2 – Levels of remanent or remaining flux to be considered for external faults when the difference of size between the CTs is limited	159
Table E.1 – Fault currents	174
Table E.2 – Fault currents	177
Table F.1 – Specification of test cases for the transformer differential protection –Internal and external faults with one saturated CT	185
Table F.2 – Specification of test cases for the transformer differential protection –External faults with two saturated CTs	186
Table F.3 – Example time constants with corresponding R/X ratios	186
Table F.4 – Specification of test cases for the transformer restricted earth fault protection – Internal and external faults with one saturated CT	188
Table F.5 – Specification of test cases for the transformer restricted earth faultprotection – External faults with two saturated CTs	188
Table F.6 – Excitation characteristic data for the high-remanence basic CT	190
Table F.7 – Magnetization curve data for the high-remanence type basic CT	193
Table F.8 – Excitation characteristic data for the non-remanence type basic CT	196
Table F.9 – Magnetization curve data for non-remanence type CT	197
Table G.1 – Restraining and differential currents for different definitions of the restraining current	200
Table I.1 – Fault type and reference voltage	204

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MEASURING RELAYS AND PROTECTION EQUIPMENT –

Part 187-1: Functional requirements for differential protection – Restrained and unrestrained differential protection of motors, generators and transformers

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 60255-187-1 has been prepared by IEC technical committee 95: Measuring relays and protection equipment. It is an International Standard.

This document, together with IEC 60255-187-2 and IEC 60255-187-3, cancels and replaces IEC 60255-13. This document constitutes a technical revision.

This document includes the following significant technical changes with respect to IEC 60255-13:

a) IEC 60255-13 has been significantly revised to follow the common structure of the functional standards for protection relays (IEC 60255-1xx series). IEC 60255-187-1 has been developed to address the restrained and unrestrained differential protection of motors, generators and transformers. The revisions include detailed description of the functions including the performance specification, testing and documentation requirements. The text of this International Standard is based on the following documents:

FDIS	Report on voting
95/465/FDIS	95/471/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/standardsdev/publications.

This International Standard contains attached files in COMTRADE file format. Configuration file: IEC 60255-187-1_External_Internal_YY0_50 Hz_4 kHz.CFG and data file: IEC 60255-187-1_External_Internal_YY0_50 Hz_4 kHz.DAT. These files are intended to be used as a complement and do not form an integral part of the document.

A list of all parts in the IEC 60255 series, published under the general title *Measuring relays and protection equipment*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

• reconfirmed,

IEC 60255-187-1:2021

- withdrawn, s://standards.iteh.ai/catalog/standards/sist/74f98562-7dd1-499d-b57b-
- replaced by a revised edition, or 2668e1/iec-60255-187-1-2021
- amended.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

MEASURING RELAYS AND PROTECTION EQUIPMENT –

Part 187-1: Functional requirements for differential protection – Restrained and unrestrained differential protection of motors, generators and transformers

1 Scope

This part of IEC 60255 specifies the minimum requirements for functional and performance evaluation of (longitudinal) differential protection designed for the detection of faults in ac motors, generators and transformers. This document also defines how to document and publish performance test results.

This document covers the differential protection function whose operating characteristic can be defined on a bias-differential plane. It includes specification of the protection function, measurement characteristics, compensation of energizing quantities, additional restraint or blocking methods (for overexcitation and magnetizing inrush), starting and time delay characteristics. This document also covers unrestrained differential protection functions traditionally combined with the restrained (biased) differential element to form a single differential relay.

This document defines the influencing factors that affect the accuracy under steady state conditions and performance characteristics during dynamic conditions. The test methodologies for verifying performance characteristics and accuracy are also included in this document.

This document also includes current transformer requirements for the protection functions.

	IEEE/ANSI C37.2 function numbers	IEC 61850-7-4 logical nodes
Transformer differential	87T	PDIF
Motor differential	87M	PDIF
Generator differential	87G	PDIF
Restricted earth fault (ground differential)	87N	PDIF
Inrush restraint or inrush blocking		PHAR
Overexcitation restraint or overexcitation blocking		PHAR

The differential protection functions covered by this document are as follows:

This document does not specify the functional description of additional features often associated with biased differential relays such as current transformer (CT) supervision (CTS), switch onto fault (SOTF) and detection of geo-magnetically induced currents (GIC).

This document does not cover differential relays designed for bus bar protection (including high impedance differential protection and low impedance differential protection) or line protection. Additionally, this document does not explicitly cover generator incomplete longitudinal differential protection, generator split-phase transverse differential protection, self-balancing or magnetic balanced protection scheme, differential protection of phase-shifting transformers, directional restricted earth fault protection, railway transformers, convertor transformers and reactors. However, the principles covered by this document can be extended to provide guidance on these applications.