SLOVENSKI STANDARD
 SIST EN 62271-105:2013

01-februar-2013

Nadomešča:
SIST EN 62271-105:2003

Visokonapetostne stikalne in krmilne naprave - 105. del: Kombinacije stikal za izmenični tok z varovalkami za naznačene napetosti nad 1 kV do vključno 52 kV (IEC 62271-105:2012)

High-voltage switchgear and controlgear - Part 105: Alternating current switch-fuse combinations for rated voltages above 1 kV up to and including 52 kV (IEC 62271105:2012)

Hochspannungs-Schaltgeräte und-Schaltahlagen-Teilo -Sicherungs-Kombinationen für Bemessungsspannungen über 1 kV bis einschließlich 52 kV (IEC 62271-105:2012)

Ta slovenski standard je istoveten z: EN 62271-105:2012

ICS:

29.130.10

Visokonapetostne stikalne in krmilne naprave

High voltage switchgear and controlgear

SIST EN 62271-105:2013 en

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 62271-105:2013
https://standards.iteh.ai/catalog/standards/sist/59357a80-cc97-464b-b804-f8bcale63596/sist-en-62271-105-2013

High-voltage switchgear and controlgear Part 105: Alternating current switch-fuse combinations for rated voltages above 1 kV up to and including 52 kV (IEC 62271-105:2012)

Appareillage à haute tension Partie 105: Combinés interrupteursfusibles pour courant alternatif de tensions assignées supérieures à 1 kV et jusqu'à 52 kV inclus (CEI 62271-105:2012)

Hochspannungs-Schaltgeräte und Schaltanlagen -
Teil 105: Wechselstrom-Lastschalter-Sicherungs-Kombinationen für Bemessungsspannungen über 1 kV bis einschließlich 52 kV

iThelh STANDARD \mathbb{P} (IECE 62271-105:2012) (standards.iteh.ai)

SIST EN 62271-105:2013
https://standards.iteh_ai/catalog/standards/sist/59357a80-cc97-464b-b804-
This European Standard was approved by GENELEC on-2012-11-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
Management Centre: Avenue Marnix 17, B-1000 Brussels

[^0]
Foreword

The text of document 17A/1013/FDIS, future edition 2 of IEC 62271-105, prepared by SC 17A, "Highvoltage switchgear and controlgear", of IEC TC 17, "Switchgear and controlgear" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 62271-105:2012.

The following dates are fixed:

- latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement
- latest date by which the national (dow) 2015-11-01 standards conflicting with the document have to be withdrawn

This document supersedes EN 62271-105:2003.
EN 62271-105:2012 includes the following significant technical changes with respect to EN 62271105:2003:

- implementation of figures at the place where they are cited first;
- renumbering of tables;
- addition of some of the proposals from IEC paper 17A/852/INF;
- addition of missing subclauses of EN 62271-1;62271-105:2013
https//standards.iteh.ai/catalog/standards/sist/59357a80-cc97-464b-b804-
- implementation of 6.105 "Extension ofevalidity ofetypentests"5and consequently removing of the relevant parts in the different existing clauses;
- change of $7^{\text {th }}$ paragraph of 6.101 .4 as there is now a definition of NSDD given in 3.7.4 of EN 622711:2008. Harmonization with EN 62271-107;
- some referenced clauses in other standards like EN 60282-1 were changed and therefore changed the editions under 1.2 to the ones referred to;
- addition of a new Annex C defining tolerances.

This standard is to be read in conjunction with EN 62271-1:2008, to which it refers and which is applicable, unless otherwise specified in this standard. In order to simplify the indication of corresponding requirements, the same numbering of clauses and subclauses is used as in EN 62271-1. Amendments to these clauses and subclauses are given under the same numbering, whilst additional subclauses are numbered from 101.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard IEC 62271-105:2012 was approved by CENELEC as a European Standard without any modification.

In the official version, for Bibliography, the following notes have to be added for the standards indicated:

IEC 62271-107	NOTE	Harmonized as EN 62271-107.
IEC 62271-202	NOTE	Harmonized as EN 62271-202.

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 62271-105:2013
https://standards.iteh.ai/catalog/standards/sist/59357a80-cc97-464b-b804-
f8bcal e63596/sist-en-62271-105-2013

Annex ZA
 (normative)

Normative references to international publications with their corresponding European publications

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

Annex ZA of EN 62271-1:2008 is applicable with the following additions:

| Publication
 IEC 60282-1 | Year | Title | EN/HD | Year |
| :--- | :---: | :--- | :--- | :---: | :---: |
| IEC/TR 60787 | 2009 | High-voltage fuses -
 Part 1: Current-limiting fuses
 Application guide for the selection of high-
 voltage current-limiting fuse-links for
 transformer circuits | - | EN 60282-1 |

INTERNATIONAL STANDARD

NORME INTERNATIONALE

High-voltage switčigear and controlgeard) PREVIEW
Part 105: Alternating current switch-fuse combinations for rated voltages above 1 kV up to and including 52 kV (uallile

SIST EN 62271-105:2013
 Appareillage à haute tension atralog/standards/sist/59357a80-cc97-464b-b804-
 Partie 105: Combinés interrupteurs-fusibles pour courant alternatif de tensions assignées supérieures à 1 kV et jusqu'à 52 kV inclus

```
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE

\section*{CONTENTS}
FOREWORD ..... 5
1 General ..... 7
1.1 Scope ..... 7
1.2 Normative references ..... 8
2 Normal and special service conditions ..... 8
3 Terms and definitions ..... 8
3.1 General terms ..... 8
3.2 Assemblies of switchgear and controlgear ..... 8
3.3 Parts of assemblies ..... 8
3.4 Switching devices ..... 8
3.5 Parts of switchgear and controlgear ..... 9
3.6 Operation ..... 10
3.7 Characteristic quantities ..... 10
3.101 Fuses ..... 14
4 Ratings ..... 15
4.1 Rated voltage \(\left(U_{\mathrm{r}}\right)\) ..... 15
4.2 Rated insulation level ..... 15
 ..... 15
4.4 Rated normal currentsand temperature rise.h.a:i.) ..... 15
4.4.1 Rated normal current \(\left(I_{\mathrm{r}}\right)\) ..... 15
4.4.2 Temperature rise SIST..स. .62..7.....05.2.0.1. ..... 15
4.5 Rated short-time withstandacurrenta \(\left(I_{\mathrm{k}}\right)\) sist/5.93.57.a8.0-.cc9.7.464b-b.0.0. ..... 15
4.6 Rated peak withstand current \(\left(I_{\mathrm{p}}\right)\) ) \(\ldots\).en-6..................... ..... 15
4.7 Rated duration of short-circuit \(\left(t_{\mathrm{k}}\right)\) ..... 15
4.8 Rated supply voltage of closing and opening devices and of auxiliary and control circuits ( \(U_{\mathrm{a}}\) ) ..... 16
4.9 Rated supply frequency of closing and opening devices and of auxiliary circuits ..... 16
4.10 Rated pressure of compressed gas supply for controlled pressure systems ..... 16
4.11 Rated filling levels for insulation and/or operation ..... 16
4.101 Rated short-circuit breaking current ..... 16
4.102 Rated transient recovery voltage ..... 16
4.103 Rated short-circuit making current ..... 16
4.104 Rated transfer current (striker operation) ( \(I_{\text {rtransfer }}\) ) ..... 17
4.105 Rated take-over current for release-operated combinations ( \(I_{\mathrm{to}}\) ) ..... 17
5 Design and construction ..... 17
5.1 Requirements for liquids in switch-fuse combinations ..... 17
5.2 Requirements for gases in switch-fuse combinations ..... 17
5.3 Earthing of switch-fuse combinations ..... 17
5.4 Auxiliary and control equipment ..... 17
5.5 Dependent power operation ..... 17
5.6 Stored energy operation ..... 17
5.7 Independent manual or power operation (independent unlatched operation) ..... 17
5.8 Operation of releases ..... 17
5.9 Low- and high-pressure interlocking and monitoring devices ..... 17
5.10 Nameplates ..... 17
5.11 Interlocking devices ..... 18
5.12 Position indication ..... 18
5.13 Degrees of protection provided by enclosures ..... 18
5.14 Creepage distances for outdoor insulators ..... 18
5.15 Gas and vacuum tightness ..... 19
5.16 Liquid tightness ..... 19
5.17 Fire hazard (flammability) ..... 19
5.18 Electromagnetic compatibility (EMC) ..... 19
5.19 X-ray emission ..... 19
5.20 Corrosion ..... 19
5.101 Linkages between the fuse striker(s) and the switch release ..... 19
5.102 Low over-current conditions (long fuse-pre-arcing time conditions) ..... 19
6 Type tests ..... 20
6.1 General ..... 20
6.1.1 Grouping of tests ..... 20
6.1.2 Information for identification of specimens ..... 21
6.1.3 Information to be included in the type-test reports ..... 21
6.2 Dielectric tests ..... 21
6.3 Radio interference voltage (r.i.v.) tests ..... 21
6.4 Measurement of the resistance of circuits ..... 21
 ..... 21
6.6 Short-time withstand current and peak withstand current tests ..... 21
6.7 Verification of the protection ..... 21
6.8 Tightness tests ..... 21
6.9 Electromagnetic compatibility tests (EMC) 0357 a\&0-ce97.464b-b804. ..... 21
6.10 Additional tests on auxiliary and controbcircuits. ..... 21
6.11 X-radiation test procedure for vacuum interrupters ..... 22
6.101 Making and breaking tests ..... 22
6.101.1 General ..... 22
6.101.2 Conditions for performing the tests ..... 22
6.101.3 Test-duty procedures ..... 28
6.101.4 Behaviour of the combination during tests ..... 33
6.101.5 Condition of the apparatus after testing ..... 33
6.102 Mechanical operation tests ..... 34
6.103 Mechanical shock tests on fuses ..... 34
6.104 Thermal test with long pre-arcing time of fuse ..... 35
6.105 Extension of validity of type tests ..... 35
6.105.1 Dielectric ..... 35
6.105.2 Temperature rise ..... 35
6.105.3 Making and breaking ..... 35
7 Routine tests ..... 36
7.101 Mechanical operating tests ..... 36
8 Guide for the selection of switch-fuse combinations ..... 36
8.1 Selection of rated values ..... 36
8.2 Continuous or temporary overload due to changed service conditions ..... 37
8.101 Guide for the selection of switch-fuse combination for transformer protection ..... 37
8.101.1 General ..... 37
8.101.2 Rated short-circuit breaking current ..... 37
8.101.3 Primary fault condition caused by a solid short-circuit on the transformer secondary terminals ..... 37
8.102 Coordination of switch and fuses for extension of the reference list ..... 38
8.102.1 General ..... 38
8.102.2 Rated normal current ..... 38
8.102.3 Low over-current performance ..... 39
8.102.4 Transfer current ..... 39
8.102.5 Take-over current ..... 39
8.102.6 Extension of the validity of type tests ..... 39
8.103 Operation ..... 39
9 Information to be given with enquiries, tenders and orders ..... 40
9.1 Information with enquiries and orders ..... 40
9.2 Information with tenders ..... 40
10 Transport, storage, installation, operation and maintenance ..... 40
11 Safety ..... 41
12 Influence of the product on the environment ..... 41
Annex A (informative) Example of the coordination of fuses, switch and transformer ..... 42
Annex B (normative) Procedure for determining transfer current ..... 45
Annex C (normative) Tolerances on test quantities for type tests ..... 50
Bibliography itreh STA NDARI PREV VIEW ..... 51
Figure 1 - Arrangement of test circuits for test duties \(T D_{\text {Isc }}^{\circ}\) and \(T D_{\text {IWmax }}\) ..... 23
Figure 2 - Arrangement of test circuits for test-duty TD \(_{\text {Itransfer }}\) ..... 24
Figure 3 - Arrangementsoftest circuits for test-dutysTDito7.a80-cc.97.464b-b804. ..... 24
Figure 4 - Determination of power-frequency recovery voltage ..... 26
Figure 5 - Representation of a specified TRV by a two-parameter reference line and a delay line ..... 27
Figure 6 - Example of a two-parameter reference line for a TRV ..... 28
Figure 7 - Characteristics for determining take-over current ..... 32
Figure 8 - Transfer current in relation to the primary fault current \(I_{\text {sc }}\) due to a solid short circuit in the transformer secondary termina ..... 38
Figure A. 1 - Characteristics relating to the protection of an 11 kV - 400 kVA transformer ..... 43
Figure A. 2 - Discrimination between HV and LV fuses ..... 44
Figure B. 1 - Practical determination of the transfer current ..... 46
Figure B. 2 - Determination of the transfer current with the iterative method ..... 48
Table 1 - Nameplate markings ..... 18
Table 2 - Standard values of prospective TRV for test-duty TD Itransfer based on practice in Europe ..... 30
Table 3 - Standard values of prospective TRV for test-duty TD Itransfer based on practice in the United States of America and Canada ..... 31
Table 4 - Summary of test parameters for test duties ..... 32
Table C. 1 - Tolerances on test quantities for type tests ..... 50

\title{
INTERNATIONAL ELECTROTECHNICAL COMMISSION
}

\title{
HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR - \\ Part 105: Alternating current switch-fuse combinations for rated voltages above 1 kV up to and including 52 kV
}

\section*{FOREWORD}
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and nongovernmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
httos://standards.iteh.ai/catalog/standards/sist/59357a80-cc97-464b-b804-
5) IEC itself does not provide any attestation of conformity Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62271-105 has been prepared by subcommittee 17A, High-voltage switchgear and controlgear, of IEC technical committee 17: Switchgear and controlgear.

This second edition cancels and replaces the first edition of IEC 62271-105, published in 2002, and constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:
- implementation of figures at the place where they are cited first;
- renumbering of tables;
- addition of some of the proposals from IEC paper 17A/852/INF;
- addition of missing subclauses of IEC 62271-1;
- implementation of 6.105 "Extension of validity of type tests" and consequently removing of the relevant parts in the different existing clauses;
- change of 7th paragraph of 6.101.4 as there is now a definition of NSDD given in 3.7.4 of IEC 62271-1:2007. Harmonization with IEC 62271-107;
- some referenced clauses in other standards like IEC 60282-1 were changed and therefore changed the editions under 1.2 to the ones referred to;
- addition of a new Annex \(C\) defining tolerances.

The text of this standard is based the following documents:
\begin{tabular}{|c|c|}
\hline FDIS & Report on voting \\
\hline \(17 \mathrm{~A} / 1013 /\) FDIS & \(17 \mathrm{~A} / 1022 /\) RVD \\
\hline
\end{tabular}

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

This standard is to be read in conjunction with IEC 62271-1:2007, to which it refers and which is applicable, unless otherwise specified in this standard. In order to simplify the indication of corresponding requirements, the same numbering of clauses and subclauses is used as in IEC 62271-1. Amendments to these clauses and subclauses are given under the same numbering, whilst additional subclauses are numbered from 101.

A list of all parts in the IEC 62271 series, published under the general title High-voltage switchgear and controlgear, can be found on the IEC website.
(standardls,iteh.ai)
The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication, At this date, the publication will be
- reconfirmed,
f8bcale63596/sist-en-62271-105-2013
- withdrawn,
- replaced by a revised edition, or
- amended.

\title{
HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR - \\ Part 105: Alternating current switch-fuse combinations for rated voltages above 1 kV up to and including 52 kV
}

\section*{1 \\ General}

\subsection*{1.1 Scope}

Subclause 1.1 of IEC 62271-1:2007 is not applicable, and is replaced as follows:

This part of IEC 62271 applies to three-pole units for public and industrial distribution systems which are functional assemblies of switches including switch-disconnectors and currentlimiting fuses designed so as to be capable of
- breaking, at the rated recovery voltage, any current up to and including the rated shortcircuit breaking current;
- making, at the rated voltage, circuits to which the rated short-circuit breaking current applies.

It does not apply to fuse-circuit-breakers, fyse-contactors, combinations for motor-circuits or to combinations incorporating single capacitor bank switches.

\section*{(standards.iteh.ai)}

In this standard, the word "combination" is used for a combination in which the components constitute a functional assembly. Each association of a given type of switch and a given type of fuse defines one type of combination \({ }_{\text {iog }}\) /standards/sist/59357a80-cc97-464b-b804-f8bcale63596/sist-en-62271-105-2013
In practice, different types of fuses may be combined with one type of switch, which give several combinations with different characteristics, in particular concerning the rated currents. Moreover, for maintenance purposes, the user should know the types of fuses that can be combined to a given switch without impairing compliance to the standard, and the corresponding characteristics of the so-made combination.

A switch-fuse combination is then defined by its type designation and a list of selected fuses is defined by the manufacturer, the so-called "reference list of fuses". Compliance with this standard of a given combination means that every combination using one of the selected fuses is proven to be in compliance with this standard.

The fuses are incorporated in order to extend the short-circuit breaking rating of the combination beyond that of the switch alone. They are fitted with strikers in order both to open automatically all three poles of the switch on the operation of a fuse and to achieve a correct operation at values of fault current above the minimum melting current but below the minimum breaking current of the fuses. In addition to the fuse strikers, the combination may be fitted with either an over-current release or a shunt release.

NOTE In this standard the term "fuse" is used to designate either the fuse or the fuse-link where the general
meaning of the text does not result in ambiguity.
This standard applies to combinations designed with rated voltages above 1 kV up to and including 52 kV for use on three-phase alternating current systems of either 50 Hz or 60 Hz .

Fuses are covered by IEC 60282-1.

Devices that require dependent manual operation are not covered by this standard.

Switches, including their specific mechanism, shall be in accordance with IEC 62271-103 except for the short-time current and short-circuit making requirements where the currentlimiting effects of the fuses are taken into account.

Earthing switches forming an integral part of a combination are covered by IEC 62271-102.

\subsection*{1.2 Normative references}

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

Subclause 1.2 of IEC 62271-1:2007 is applicable with the following additions:
IEC 60282-1:2009, High-voltage fuses - Part 1: Current-limiting fuses
IEC/TR 60787:2007, Application guide for the selection of high-voltage current-limiting fuselinks for transformer circuits

IEC 62271-1:2007, High-voltage switchgear and controlgear - Part 1: Common specifications
IEC 62271-100:2008, High-voltage switchgear and controlgear - Part 100: Alternating-current circuit-breakers iTTeh STANDARD PREVIEW

IEC 62271-102:2001, High-voltaget switchgeärcand controlgeiar - Part 102: Alternating current disconnectors and earthing switches

SIST EN 62271-105:2013
IEC 62271-103:2011pHighevoltage switchgearaandicontrolgear9-Part-103: Switches for rated voltages above 1 kV up to and including 52 k ken-62271-105-2013

\section*{2 Normal and special service conditions}

Clause 2 of IEC 62271-1:2007 is applicable.

\section*{3 Terms and definitions}

Clause 3 of IEC 62271-1:2007 is applicable with the the following additions.

\subsection*{3.1 General terms}

Subclause 3.1 of IEC 62271-1:2007 is applicable.

\subsection*{3.2 Assemblies of switchgear and controlgear}

Subclause 3.2 of IEC 62271-1:2007 is applicable.

\subsection*{3.3 Parts of assemblies}

Subclause 3.3 of IEC 62271-1:2007 is applicable.

\subsection*{3.4 Switching devices}

Subclause 3.4 of IEC 62271-1:2007 is applicable, with the following additions

\subsection*{3.4.101 \\ switch-fuse combination}
combination of a three-pole switch with three fuses provided with strikers, the operation of any striker causing all three poles of the switch to open automatically

Note 1 to entry: The switch-fuse combination includes fuse-switch combination.

\subsection*{3.4.102}
switch-fuse combination base

\section*{combination base}
switch-fuse combination without fuse-links mounted

\subsection*{3.4.103}

\section*{switch-fuse}
switch in which one or more poles have a fuse in series in a composite unit
[SOURCE: IEC 60050-441:2007, 441-14-14]

\subsection*{3.4.104}
fuse-switch
switch in which a fuse-link or a fuse-carrier with fuse-link forms the moving contact
[SOURCE: IEC 60050-441:2007, 441-14-17]

\subsection*{3.4.105
switch-disconnector \\ switch which, in the open position, satisfies the isolating requirements specified for a disconnector}
[SOURCE: IEC 60050-441:2007, 441-14-12]62271-105:2013
https//standards.iteh.ai/catalog/standards/sist/59357a80-cc97-464b-b804-

\subsection*{3.4.106 \\ f8bca1e63596/sist-en-62271-105-2013}
release operated combination
combination in which automatic opening of the switch can also be initiated by either an overcurrent release or a shunt release

\subsection*{3.5 Parts of switchgear and controlgear}

Subclause 3.5 of IEC 62271-1:2007 is applicable, with the following additions.

\subsection*{3.5.101}
release (of a mechanical switching device)
device, mechanically connected to a mechanical switching device, which releases the holding means and permits the opening or the closing of the switching device
[SOURCE: IEC 60050-441:2007, 441-15-17]

\subsection*{3.5.102}

\section*{over-current release}
release which permits a mechanical switching device to open with or without time-delay when the current in the release exceeds a predetermined value

Note 1 to entry: This value can in some cases depend upon the rate-of-rise of current.
[SOURCE: IEC 60050-441:2007, 441-16-33]
3.5.103
shunt release
release energized by a source of voltage```


[^0]:    © 2012 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

