

Edition 1.0 2017-01

TECHNICAL REPORT

Documentation on design automation subjects R Mathematical algorithm hardware description languages for system level modeling and verification (HDLMath)

> <u>IEC TR 63051:2017</u> https://standards.iteh.ai/catalog/standards/sist/94d69512-88ef-4680-b0df-8592641a5e7b/iec-tr-63051-2017

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2017 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office	Tel.: +41 22 919 02 11
3, rue de Varembé	Fax: +41 22 919 03 00
CH-1211 Geneva 20	info@iec.ch
Switzerland	www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue

The stand-alone application for consulting the entire bibliographical information on IEC International Standards, Technical Specifications, Technical Reports and other documents. Available for PC, Mac OS, Android Tablets and iPad.

IEC publications search - www.iec.ch/searchpub

The advanced search enables to find IEC publications by a variety of criteria (reference number) text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published

Electropedia - www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing 20 000 terms and definitions in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

65 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc

details all new publications released. Available online and 630 if you wish to give us your feedback on this publication or also once a month by emailtips://standards.itch.ai/catalog/standardsedlfurther/assistance/please/contact the Customer Service 8592641a5c7b/iec-Centresqe2@jec.ch.

Edition 1.0 2017-01

TECHNICAL REPORT

Documentation or design automation subjects R Mathematical algorithm hardware description languages for system level modeling and verification (HDLMath)

> <u>IEC TR 63051:2017</u> https://standards.iteh.ai/catalog/standards/sist/94d69512-88ef-4680-b0df-8592641a5e7b/iec-tr-63051-2017

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 25.040.01; 35.240.50

ISBN 978-2-8322-3772-4

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOREWORD		3
INTRODUCTION		5
1 Scope		7
2 Normative refere	nces	7
3 Terms and definit	tions	7
4 Definition and po	sitioning of HDLMath	7
4.1 General	-	7
4.2 Current HD	LMaths	7
4.3 Design abs	traction level of HDLMath	8
5 Functional requir	ements of HDLMath	9
5.1 General		9
5.2 Mathematic	al expressions	9
5.3 Various kin	ds of precision computation	10
5.4 Exception a	and error handling	10
	isional arrays	
	al functions	
	erical and symbolic computations	
5.8 Feedback p	d functions in C-code	12
5.9 User-define	d functions in C-code	13
	environmentandards.iteh.ai)	
	urrent HDLMath languages	
7 Conclusion	IEC TR 63051:2017 ps://standards.iteh.ai/catalog/standards/sist/94d69512-88ef-4680-b0df-	15
Bibliography	8592641a5e7b/iec-tr-63051-2017	16
Figure 1 – Numbers o	f description lines	9
Figure 2 – Examples of	of mathematical expressions	10
Figure 3 – Multi-dimer	nsional arrays and mathematical functions in HDLMath1	11
Figure 4 – Multi-dimer	nsional arrays and mathematical functions in HDLMath2	12
Figure 5 – Mixed num	erical and symbolic computations in HDLMath1 and HDLMath2	12
-	f a feedback process	
	f feedback process in HDLMath1 and HDLMath2	
	of user-defined functions in C-code in HDLMath1 and HDLMath2	
•	f test-bench description of HDLMath1 and HDLMath2	
	f mathematics applications	
	f precision type	
Table 3 – Examples o	f overflow handling	11
Table 4 – Comparison	of current HDLMaths	15

INTERNATIONAL ELECTROTECHNICAL COMMISSION

DOCUMENTATION ON DESIGN AUTOMATION SUBJECTS – MATHEMATICAL ALGORITHM HARDWARE DESCRIPTION LANGUAGES FOR SYSTEM LEVEL MODELING AND VERIFICATION (HDLMath)

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any enduser.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to iEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies ds/sist/94d69512-88ef-4680-b0df-
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a Technical Report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC 63051, which is a Technical Report, has been prepared by IEC technical committee 91: Electronics assembly technology.

The text of this Technical Report is based on the following documents:

Enquiry draft	Report on voting
91/1349/DTR	91/1396/RVC

Full information on the voting for the approval of this Technical Report can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

iTeh STANDARD PREVIEW (standards.iteh.ai)

IEC TR 63051:2017 https://standards.iteh.ai/catalog/standards/sist/94d69512-88ef-4680-b0df-8592641a5e7b/iec-tr-63051-2017

INTRODUCTION

Around the world, engineers in industries such as electronics and automobiles are developing many kinds of systems and products. However, these are developed based on conventional design processes and suffer from many design problems and long design times. Because the laws of nature can be expressed mathematically, mathematics is a good algorithmic method for the description and modeling of such systems. Mathematical modeling is also an important approach for both solving problems and visualizing the abstract concepts involved.

System LSI (Large Scale Integration) can be described at three levels of complexity as follows:

- 1) The the algorithmic level, which specifies only the algorithm used by the hardware for the problem solution;
- 2) the register transfer level, in which the registers are system elements and the data transfer between these registers is specified according to some rule;
- 3) the circuit level, where gates and flip-flops are replaced by the circuit elements such as transistors, diodes, resistors, etc.

For levels 2) and 3), VHDL (IEC 61691-1-1:2011 [11¹) and SystemVerilog (IEC 62530:2011[2]) have already been standardized by the IEC and IEEE and have been in practical use for over twenty years.

For level 1), System C is able to describe hardware systems at the behavioral level.

iTeh STANDARD PREVIEW The purpose of this document is to accelerate the standardization of a mathematical algorithm description language (HDLMath); HDLMath will be used to describe and verify the entire behavior of systems and/or products using mathematical algorithms of electronic systems. It is a higher level language than conventional HDL (Hardware Description Language) languages such as VHDL and SystemVerilog. IEC IK 050512017 https://standards.itch.ai/catalog/standards/sist/94d69512-88ef-4680-b0df-

8592641a5e7b/jec-tr-63051-HDLMath and its design environment can support the design of many domains and applications as indicated in Table 1.

Mathematics	Application examples
Complex numbers	Resistors, inductors, capacitors, power engineering, analysis of electric and magnetic fields, digital signal processing, image processing
Matrices and determinants	Electrical networks, computer graphics, image analysis
Laplace transforms	Circuits, power systems (generators), feedback loops
Statistics and probability	Failure rates for semiconductor devices, behavior of semiconductor materials, image analysis, data compression, digital communications techniques, error correction
Vector and trigonometry	Oscillating waves (circuits, signal processing), electric and magnetic fields, design of power generating equipment, radio frequency (RF) systems and antenna design
Differentiation and integration	Calculation of currents in a circuit, wave propagation, design of semiconductors, image analyses, design of firing circuits
Functions, polynomial, linear equations, logarithms, Euclidean geometry	Curve fitting, fuel cell design, traffic modeling, power analysis, stress analysis, determining the size and shape of parts, software design, computer graphics

Table 1 – Examples of mathematics applications

¹ Numbers in square brackets refer to the Bibliography.

Recently, several HDLMath languages have already been used to design the mathematical algorithms in electronic systems. MATLAB/SIMULINK is one such popular design environment for the design and verification of various system behaviors. FinSimMath has been proposed and put to practical use by several groups to design and verify mathematical algorithms in ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array). System C-AMS is mainly for analog circuit design and is an extension of the System C standardized by the IEEE and IEC. It is capable of describing mathematical algorithms using additional C-code extensions. IEC TR 62856:2013 [3] (BVDL, or Bird's-eye View of Design Languages) describes the features of existing design languages, as well as listing the requirements for enhancing design languages and for developing new ones.

Another purpose of this document is to add HDLMath to BVDL as a system modeling language. This document describes nine functional requirements for an HDLMath and compares current HDLMath languages from a design viewpoint. It is intended to accelerate the standardization of a mathematical algorithm design language and to establish a good system modeling environment in the world.

iTeh STANDARD PREVIEW (standards.iteh.ai)

IEC TR 63051:2017 https://standards.iteh.ai/catalog/standards/sist/94d69512-88ef-4680-b0df-8592641a5e7b/iec-tr-63051-2017

DOCUMENTATION ON DESIGN AUTOMATION SUBJECTS -MATHEMATICAL ALGORITHM HARDWARE DESCRIPTION LANGUAGES FOR SYSTEM LEVEL MODELING AND VERIFICATION (HDLMath)

1 Scope

A hardware description language provides a means to describe the behavior of a system precisely and concisely. This document describes the main functional requirements for an HDLMath language and compares existing HDLMath languages from the viewpoint of designers. It is intended to accelerate the standardization of a mathematical algorithm design language and to help establish a new and good system modeling and verification environment.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

There are no normative references in this document, PREVIEW

(standards.iteh.ai) Terms and definitions 3

No terms and definitions are listed in this document.

sist/94d69512-88ef-4680-b0df-

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

Definition and positioning of HDLMath 4

4.1 General

HDLMath is defined as a language for describing and verifying the behavior of an entire system or product using mathematical algorithms.

IEC TR 62856:2013 (BVDL) describes the features of existing design languages used in the design processes applied to the development of System-on-Chip (SoC) devices, which range from system level design, IP block creation and analog block design, to SoC design implementation and verification. HDLMath will cover system level design in the BVDL schema.

4.2 **Current HDLMaths**

Currently, there are three kinds of language for these design environments: HDLMath1, HDLMath2, and HDLMath3.

HDLMath1 is a kind of high-level language that has an interactive environment for numerical computation, visualization, and programming. It is able to analyze data, develop algorithms, and create models and applications using the language, tools, and built-in mathematical functions. It features the following:

- a) a block diagram environment for multi-domain simulation and model-based design;
- b) simulation, automatic code generation, and continuous test and verification of embedded systems.

- 8 -

HDLMath2 is motivated by the need for mathematical modeling within the Verilog language. Its features are as follows:

- no explicit conversion functions are necessary;
- support for runtime changes of formats, including the number of bits of the various fields;
- data in multi-dimensional arrays that are easy to access globally.

The language is designed to support a large number of mathematical system tasks, and provides access to information regarding the occurrence of overflows, underflows, maximum number of bits needed, cumulative error, etc.

HDLMath3 is a language mainly to support analog design. It allows networks of analog parts such as resistors, capacitors, etc., to be defined. The simulator extracts the differential equations corresponding to the network of analog parts and solves them based on initial conditions and using a timestep provided by the user. It is able to handle blocks that are modeled mathematically and written at the C/C++ level. However, the mathematical capabilities in math.h (a kind of C function library) are limited at the low level of C/C++ and not at the high levels found in HDLMath1 or HDLMath2.

4.3 Design abstraction level of HDLMath RD PREVIEW

Figure 1 shows the number of lines of code for several small examples written using HDLMath1 and HDLMath2. It also shows the length of the C-code generated automatically from an HDLMath1 description. The number of lines of C-code is several hundred times larger than that of the HDLMath descriptions. The figure indicates how HDLMath languages can be used to design at a higher level of design abstraction and hence how design productivity is higher than C level design. 8592641a5e7b/jec-tr-63051-2017

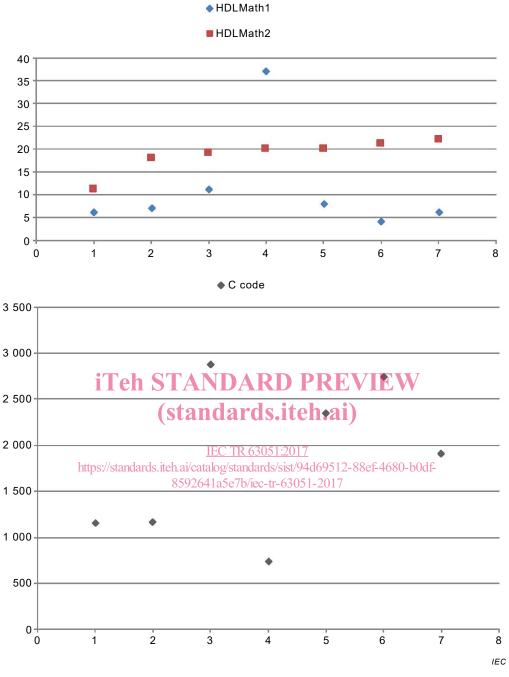


Figure 1 – Numbers of description lines

5 Functional requirements of HDLMath

5.1 General

When designing mathematical algorithms for system level modeling with an HDLMath, the HDLMath shall cover the following functional requirements in order to achieve utmost precision.

5.2 Mathematical expressions

The mathematical operators +, -, *, **, and / shall be applicable to any combination of the following operand and result formats: arbitrary-precision fixed-point, arbitrary-precision floating-point, integer, real, register, and constants. Trigonometric and hyperbolic (direct and inverse) functions shall be supported for any precision. Power, logarithm, and square root