

Edition 1.0 2020-01

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Fuel cell technologies h STANDARD PREVIEW

Part 8-201: Energy storage systems using fuel cell modules in reverse mode – Test procedures for the performance of power-to-power systems

Technologies des piles à combustible de la compustible de la compustible de la compusible d

Partie 8-201: Systèmes de stockage de l'énergie utilisant des modules à piles à combustible en mode inversé – Procédures d'essai pour la performance des systèmes électriques à électriques

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2020 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Central Office Tel.: +41 22 919 02 11

3, rue de Varembé info@iec.ch CH-1211 Geneva 20 www.iec.ch

Switzerland

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and 8.67,000 electrotechnical terminology entries in English and once a month by email. https://standards.iteh.ai/catalog/standards

IEC Customer Service Centre - webstore.led.ch/csc438/iec-62 If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online. 21

IEC Glossary - std.iec.ch/glossary

French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

A propos de l'IEC

La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC

Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l'édition la plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC webstore.iec.ch/advsearchform

La recherche avancée permet de trouver des publications IEC en utilisant différents critères (numéro de référence, texte, comité d'études,...). Elle donne aussi des informations sur les projets et les publications remplacées ou retirées.

IEC Just Published - webstore.iec.ch/justpublished

Restez informé sur les nouvelles publications IEC. Just Published détaille les nouvelles publications parues. Disponible en ligne et une fois par mois par email.

Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions contactez-nous: sales@iec.ch.

Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au monde, avec plus de 22 000 articles terminologiques en anglais et en français, ainsi que les termes équivalents dans 16 langues additionnelles. Egalement appelé Vocabulaire Electrotechnique International (IEV) en ligne.

Glossaire IEC - std.iec.ch/glossary

67 000 entrées terminologiques électrotechniques, en anglais et en français, extraites des articles Termes et Définitions des publications IEC parues depuis 2002. Plus certaines entrées antérieures extraites des publications des CE 37, 77, 86 et CISPR de l'IEC.

Edition 1.0 2020-01

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Fuel cell technologies A STANDARD PREVIEW

Part 8-201: Energy storage systems using fuel cell modules in reverse mode – Test procedures for the performance of power-to-power systems

IEC 62282-8-201:2020

Technologies des piles à combustible and s/sist/1 dea 98a5-9dcd-4124-8578-

Partie 8-201: Systèmes de stockage de l'énergie utilisant des modules à piles à combustible en mode inversé – Procédures d'essai pour la performance des systèmes électriques à électriques

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

ICS 27.070 ISBN 978-2-8322-7685-3

Warning! Make sure that you obtained this publication from an authorized distributor.

Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

CONTENTS

FC	FOREWORD4				
IN	INTRODUCTION6				
1	Scop	e	7		
2	Norm	ative references	8		
3	Term	s, definitions and symbols	9		
	3.1	Terms and definitions			
	3.2	Symbols			
4		urement instruments and measurement methods			
-	4.1	General			
	4.2	Instrument uncertainty			
	4.3	Measurement plan			
	4.4	Environmental conditions			
	4.5	Maximum permissible variation in test operating conditions			
5		em parameters			
J	•	General			
	5.1				
	5.2	Electric energy storage capacity			
	5.3	Rated electric power input			
	5.4	Rated net electric power output	18		
	5.5 5.6	System response (step response time and ramp rate)	10		
	5.6.1	Step response time			
	5.6.2				
	5.0.2	https://standards.iteb.ai/catalog/standards/sist/1dea98a5-9dcd-4124-8578-	20		
		Minimum switchover time ai/catalog/standards/sist/1dea98a5-9dcd-4124-8578- 0/4cac1c7438/iec-62282-8-201-2020 Quiescent state loss rate	20		
	5.8	Heat input rate			
	5.9	·			
	5.10	Recovered heat output rate			
	5.11	Acoustic noise level			
	5.12	Total harmonic distortion			
c	5.13	Discharge water quality			
6		methods and procedures			
	6.1	General			
	6.2	Electric energy storage capacity test			
	6.3	Rated electric power input test			
	6.4	Rated net electric power output test			
	6.5	Roundtrip electrical efficiency test			
	6.6	Other system performance test			
	6.6.1	System response test, step response time and ramp rate			
	6.6.2				
	6.6.3	Quiescent state loss rate test			
	6.6.4	•			
	6.6.5	•			
	6.6.6				
	6.6.7				
	6.6.8				
	6.7	Component performance test			
	6.7.1	Electrolyser performance test	27		

6.7.2	Hydrogen storage performance test	28
6.7.3	Fuel cell performance test	28
6.7.4	Water management system performance test	29
6.7.5	Battery performance test	29
6.7.6	Oxygen storage performance test	29
7 Test	reports	29
7.1	General	29
7.2	Report items	29
7.3	Tested system data description	30
7.4	Test condition description	30
7.5	Test data description	30
7.6	Uncertainty evaluation	30
Bibliograp	vhy	31
with elect Figure 2 – with rever	System configuration of electric energy storage system using hydrogen – Type rolyser and fuel cell	8
Figure 3 -	- Typical sequence of phases during the system operation	16
Figure 4 -	Step response time and ramp rate of EES system	19
Figure 5 -	- Step response test	24
Figure 6 -	- Minimum switch over(time testlards.iteh.ai)	25
Table 1 –	Symbols IEC 62282-8-201:2020 https://standards.iteh.ai/catalog/standards/sist/1dea98a5-9dcd-4124-8578-	14
Table 2 –	https://standards.iteh.ai/catalog/standards/sist/1dea98a5-9dcd-4124-85/8- Required steps before(executingsthe measurement)	16
	Example of document format of roundtrip electrical efficiency	
	Additional parameters measured on the electrolyser or the reversible cell	0
	electrolysis mode	27
Table 5 –	Additional parameters measured on the hydrogen storage component	28
	Additional parameters measured on the fuel cell or the reversible cell module	
	I mode	28

INTERNATIONAL ELECTROTECHNICAL COMMISSION

FUEL CELL TECHNOLOGIES -

Part 8-201: Energy storage systems using fuel cell modules in reverse mode – Test procedures for the performance of power-to-power systems

FOREWORD

- 1) The International Electro technical Commission (IEC) is a worldwide organization for standardization comprising all national electro technical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62282-8-201 has been prepared by IEC technical committee 105: Fuel cell technologies.

The text of this International Standard is based on the following documents:

FDIS	Report on voting
105/764/FDIS	105/777/RVD

Full information on the voting for the approval of this International Standard can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 62282 series, published under the general title *Fuel cell technologies*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- · reconfirmed,
- · withdrawn,
- · replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>IEC 62282-8-201:2020</u> https://standards.iteh.ai/catalog/standards/sist/1dea98a5-9dcd-4124-8578-0f4cac1c7438/iec-62282-8-201-2020

INTRODUCTION

This part of IEC 62282 describes performance evaluation methods for electric energy storage systems using hydrogen that employ electrochemical reactions both for water/steam electrolysis and electric generation.

This document is intended for power to power systems which typically employ a set of electrolyser and fuel cell, or a reversible cell for devices of electric charge and discharge.

A typical targeting application of the electric energy storage systems using hydrogen is in the class of energy intensive electric energy storage. The systems are recognized as critically useful for the relatively long-term power storage operation, such as efficient storage and supply of the renewable power derived electric energy and grid stabilization.

IEC 62282-8 (all parts) aims to develop performance test methods for power storage and buffering systems based on electrochemical modules (combining electrolysis and fuel cells, in particular reversible cells), taking into consideration both options of re-electrification and substance (and heat) production for sustainable integration of renewable energy sources.

Under the general title *Energy storage systems using fuel cell modules in reverse mode*, the IEC 62282-8 series consists of the following parts:

- IEC 62282-8-101: Test procedures for the performance of solid oxide single cells and stacks, including reversible operation TANDARD PREVIEW
- IEC 62282-8-102: Test procedures for the performance of single cells and stacks with proton exchange membranes, including reversible operation 21
- IEC 62282-8-1031: Alkaline single cell and stack performance including reversible operation
- IEC 62282-8-201: Test procedures for the performance of power-to-power systems
- IEC 62282-8-2022: Power-to-power-systems2-28Safety-2020
- IEC 62282-8-300 (all parts)3: Power-to-substance systems

As a priority dictated by the emerging needs for industry and opportunities for technological development, IEC 62282-8-101, IEC 62282-8-102 and IEC 62282-8-201 have been initiated jointly and firstly. These parts are presented as a package to highlight the need for an integrated approach as regards the system's application (i.e. a solution for energy storage) and its fundamental constituent components (i.e. fuel cells operated in reverse or reversing mode).

IEC 62282-8-103, IEC 62282-8-202 and IEC 62282-8-300 (all parts) are suggested but are left for initiation at a later stage.

¹ Under consideration.

² Under consideration.

³ Under consideration.

FUEL CELL TECHNOLOGIES -

Part 8-201: Energy storage systems using fuel cell modules in reverse mode – Test procedures for the performance of power-to-power systems

1 Scope

This part of IEC 62282 defines the evaluation methods of typical performances for electric energy storage systems using hydrogen. This is applicable to the systems that use electrochemical reaction devices for both power charge and discharge. This document applies to systems that are designed and used for service and operation in stationary locations (indoor and outdoor).

The conceptual configurations of the electric energy storage systems using hydrogen are shown in Figure 1 and Figure 2. Figure 1 shows the system independently equipped with an electrolyser module and a fuel cell module. Figure 2 shows the system equipped with a reversible cell module. There are an electrolyser, a hydrogen storage and a fuel cell, or a reversible cell, a hydrogen storage and an overall management system (which may include a pressure management) as indispensable components. There may be a battery, an oxygen storage, a heat management system (which may include a heat storage) and a water management system (which may include a water storage) as optional components. The performance measurement is executed in the area surrounded by the outside thick solid line square (system boundary).

(standards.iteh.ai)

NOTE In the context of this document, the term "reversible" does not refer to the thermodynamic meaning of an ideal process. It is common practice in the fuel cell community to call the operation mode of a cell that alternates between fuel cell mode and electrolysis mode "reversible" 62282-8-201:2020

https://standards.iteh.ai/catalog/standards/sist/1dea98a5-9dcd-4124-8578-

This document is intended to be used for data exchanges in commercial transactions between the system manufacturers and customers. Users of this document can selectively execute test items suitable for their purposes from those described in this document.

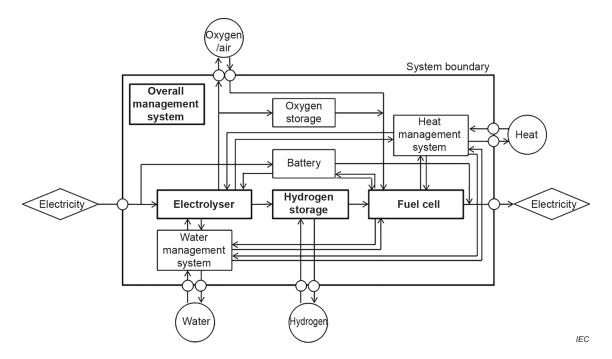


Figure 1 – System configuration of electric energy storage system using hydrogen – Type with electrolyser and fuel cell

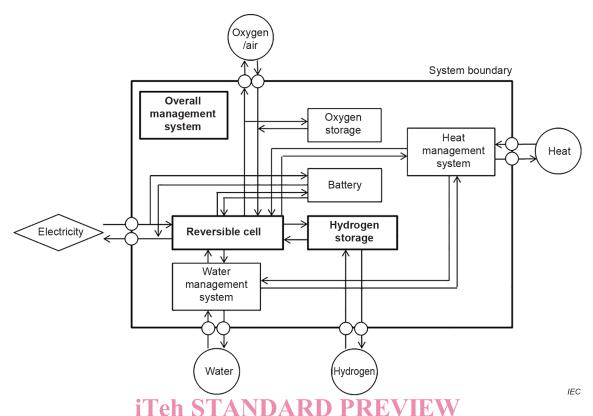


Figure 2 - System configuration of electric energy storage system using hydrogen Type with reversible cell

IEC 62282-8-201:2020 2 **Normative references**

standards.iteh.ai/catalog/standards/sist/1dea98a5-9dcd-4124-8578-

0f4cac1c7438/iec-62282-8-201-2020
The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 61427-1, Secondary cells and batteries for renewable energy storage - General requirements and methods of test - Part 1: Photovoltaic off-grid application

IEC 61427-2, Secondary cells and batteries for renewable energy storage - General requirements and methods of test - Part 2: On-grid applications

IEC 62282-3-200, Fuel cell technologies - Part 3-200: Stationary fuel cell power systems -Performance test methods

IEC 62282-3-201, Fuel cell technologies - Part 3-201: Stationary fuel cell power systems -Performance test methods for small fuel cell power systems

IEC 62282-8-101, Fuel cell technologies - Part 8-101: Energy storage systems using fuel cell modules in reverse mode - Solid oxide single cell and stack performance including reversible operation

IEC 62282-8-102, Fuel cell technologies – Part 8-102: Energy storage systems using fuel cell modules in reverse mode – Test procedures for PEM single cell and stack performance including reversible operation

IEC 62933-2-1:2017, Electrical energy storage (EES) systems - Part 2-1: Unit parameters and testing methods - General specification

ISO/IEC Guide 98-3, Uncertainly of measurement – Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)

ISO 3746, Acoustics – Determination of sound power levels and sound energy levels of noise sources using sound pressure – Survey method using an enveloping measurement surface over a reflecting plane

ISO 4064-1, Water meters for cold potable water and hot water – Part 1: Metrological and technical requirements

ISO 4064-2, Water meters for cold potable water and hot water – Part 2: Test methods

ISO 7888, Water quality - Determination of electrical conductivity

ISO 9614-1, Acoustics – Determination of sound power levels of noise sources using sound intensity – Part 1: Measurement at discrete points

ISO 11204, Acoustics – Noise emitted by machinery and equipment – Determination of emission sound pressure levels at a work station and at other specified positions applying accurate environmental corrections

ISO 16111, Transportable gas storage devices – Hydrogen absorbed in reversible metal hydride

ISO 19880-1, Gaseous hydrogen - Fuelling stations - Part 1: General requirements

ISO 19881, Gaseous hydrogen - Land Vehicle fuel containers

ISO 19882, Gaseous hydrogen – The mally activated pressure relief devices for compressed hydrogen vehicle fuel containers eh.ai/catalog/standards/sist/1dea98a5-9dcd-4124-8578-0f4cac1c7438/iec-62282-8-201-2020

ISO 19884, Gaseous hydrogen – Cylinders and tubes for stationary storage

ISO 22734-1, Hydrogen generators using water electrolysis process – Part 1: Industrial and commercial applications

ISO 22734-2, Hydrogen generators using water electrolysis process – Part 2: Residential applications

3 Terms, definitions and symbols

3.1 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1.1

electric energy storage

FFS

installation able to store electric energy or which converts electric energy into another form of energy and vice versa, while storing energy

- 10 -

Note 1 to entry: EES can be used also to indicate the activity of an apparatus described in the definition during performing its own functionality.

Note 2 to entry: This note applies to the French language only.

[SOURCE: IEC 62933-1:2018, 3.1, modified - Definition revised and example and note 2 deleted.]

3.1.2

electric energy storage system EES system

installation with defined electrical boundaries, comprising at least one EES, whose purpose is to extract electric energy from the electric power system, store this energy in some manner and inject electric energy into the electric power system and which includes civil engineering works, energy conversion equipment and related ancillary equipment

Note 1 to entry: The EES system is controlled and coordinated to provide services to the electric power system operators or to the electric power system users.

Note 2 to entry: In some cases, an EES system can require an additional energy source during its discharge, providing more energy to the electric power system than the energy it stores.

Note 3 to entry: This note applies to the French language only.

[SOURCE: IEC 62933-1:2018, 3.2, modified - "grid connected" and "internally" deleted, "whose purpose is to" added and note 3 deleted.]

iTeh STANDARD PREVIEW 3.1.3

EES system using hydrogen EES using hydrogen, whose purpose is to extract electric energy from the electric power system, store this energy as hydrogen and inject electric energy into the electric power system, using hydrogen-as a fuel

https://standards.iteh.ai/catalog/standards/sist/1dea98a5-9dcd-4124-8578-

Note 1 to entry: The conceptual configurations of the EES system using hydrogen are referred to in Clause 1.

3.1.4

battery

device for storing electricity with electricity charge and discharge functions

Note 1 to entry: They are typically employed for absorbing short-term fluctuating electricity input combined with hydrogen storage of an EES system using hydrogen.

electrolyser

electrochemical device that converts water/steam to hydrogen and oxygen by electrolysis

Note 1 to entry: They include alkaline water electrolysis device, polymer electrolyte water electrolysis device, solid oxide electrolysis cell device, and other devices of similar type.

3.1.6

environment

surroundings in which an EES system using hydrogen exists, including air, water, land, natural resources, flora, fauna, humans, and their interrelation

3.1.7

fuel cell

electrochemical device that converts the chemical energy of a fuel and an oxidant to electric energy (DC power), heat and reaction products

Note 1 to entry: The fuel and oxidant are typically stored outside of the fuel cell and transferred into the fuel cell as they are consumed.

[SOURCE: IEC 60050-485:—, 485-08-01]

3.1.8

heat management system

subsystem of the EES system using hydrogen, for controlling the heat storage and flows in the system and its POCs (if applicable)

Note 1 to entry: Typically, heat is utilized among the various system equipment. An example of the mutual heat utilization is where the exothermic reaction heat of the fuel cell is conveyed to an electrolysis cell, in particular a solid oxide electrolysis cell for endothermic consumption.

3.1.9

hydrogen storage

component of the EES system using hydrogen, for storing hydrogen which is produced by water/steam electrolysis in or supplied to the system

Note 1 to entry: There are several kinds of hydrogen storage equipment depending on the hydrogen storage principles. They include low/high-pressure gas, liquid, hydrogen-absorbing alloy (hydrogen absorbed in reversible metal hydride), non-metal hydrides and others.

3.1.10

limit operating conditions

conditions not to be exceeded for operating the system normally and safely

Note 1 to entry: They are recommended by the system manufacturer considering the system characteristics.

3.1.11 iTeh STANDARD PREVIEW

net electric energy output

usable electric energy output from the EES system using hydrogen, which is able to serve for the user's purpose, excluding internal and external electric energy dissipation of the system

IEC 62282-8-201:2020

Note 1 to entry: The internal and external electric dissipation of the system is typically electric energy loss from the equipment operations and connections. 0 $\frac{1}{12}$ $\frac{1}{12}$

Note 2 to entry: The net electric energy output is the difference between the electric energy outputs and inputs at all POCs

3.1.12

net electric power

power output of the electric energy storage system and available for external use

Note 1 to entry: The net electric power output is the difference between the electric power outputs and inputs at all POCs.

3.1.13

operating conditions

conditions at which the tested system, more specifically each equipment of the tested system, is operated, as well as physical conditions such as range of ambient temperatures, pressure, radiation levels, humidity and atmosphere are included

3.1.14

operating state

state at which the tested system, more specifically each equipment of the tested system, is operated at specified conditions

3.1.15

overall management system

subsystem of the EES system using hydrogen, served for monitoring and controlling the EES system using hydrogen, by fulfilling all equipment and functions for acquisition, processing, transmission, and display of the necessary process information

- 12 -

Note 1 to entry: The overall management system also includes a subsystem containing an arrangement of hardware, software, and propagation media to allow the transfer of messages from one EES system using hydrogen component/subsystem to another one, including the data interface with external links.

Note 2 to entry: Generally, the control subsystem may be connected to the primary POC (just for data exchange) and it can comprise the communication subsystem and the protection subsystem.

Note 3 to entry: The protection subsystem includes one or more protection equipment, instrument transformer(s), transducers, wiring, tripping circuit(s), auxiliary supply(s). Depending upon the principle(s) of the protection system, it may include one end or all ends of the protected section and, possibly, automatic reclosing equipment.

3.1.16

oxygen storage

one component of the EES system using hydrogen, for storing oxygen, which is produced by water/steam electrolysis in (or supplied to) the system

Note 1 to entry: Oxygen storage is equipped, if needed.

3.1.17

point of connection

POC

point where an EES system using hydrogen is connected to a supply/extraction exterior to the system

Note 1 to entry: Generally, POCs are electricity, heat, water, hydrogen and oxygen/air connection points. They are shown as open circles on the system boundary (thick solid-line square) in Figure 1 and Figure 2.

Note 2 to entry: This note applies to the French language only. PREVIEW

3.1.18

quiescent state

(standards.iteh.ai)

operating state of the EES system, where it is partly or fully charged, and no intended discharging of the stored energy takes place82-8-2012020

https://standards.iteh.ai/catalog/standards/sist/1dea98a5-9dcd-4124-8578-

3.1.19

0f4cac1c7438/iec-62282-8-201-2020 quiescent state loss rate

sum of energy loss rate and energy consumption rate of EES system during the quiescent state

3.1.20

rated operating conditions

conditions which are applied for standard operation of equipment and/or system

Note 1 to entry: They are recommended by the equipment and/or system manufacturers considering the respective characteristics of the equipment/system.

3.1.21

rated input conditions

conditions specified by the manufacturer, at which the tested system absorbs electric power input at the POC

3.1.22

rated output conditions

conditions specified by the manufacturer, at which the tested system delivers electric power output at the POC

3.1.23

rated test conditions

specific boundary conditions at which the tested system is operated

Note 1 to entry: They shall be agreed between the system manufacturer and customer.

3 1 24

reversible cell

electrochemical device that is able to operate as a fuel cell or as an electrolyser, alternatively

Note 1 to entry: The term "reversible" in this context does not refer to the thermodynamic principle of an ideal process.

3.1.25

roundtrip electrical efficiency

electric energy discharged measured on the primary point of connection (POC) divided by the electric energy absorbed, measured on all the POC (primary and auxiliary), over one EES system standard charging/discharging cycle in specified operating conditions

Note 1 to entry: Efficiency is generally expressed in percentage.

3.1.26

operation history

record of the operating conditions of the system

3.1.27

switchover time

time that is required to switch an EES system using hydrogen from a specified charging phase to a specified discharging phase or vice versa

Note 1 to entry: This can be of relevance in case grid service shall be performed with the system. It comprises the time that is required to go from one operating point in/either charging or discharging operation to quiescent state, purging of gas lines if applicable, setting of auxiliary components (valves, heaters, compressors etc.) if applicable and to go to an operating point in the opposite operating phase (discharging or charging).

3.1.28

test state

IEC 62282-8-201:2020

state of the tested system that is consistent with the objective of the evaluation

0f4cac1c7438/iec-62282-8-201-2020

Note 1 to entry: More specifically, it means the specific operating state for equipment of the tested system.

3.1.29

tested system

system defined by its boundary to the environment, that is in accordance with the objective of the evaluation

3.1.30

water management system

subsystem of the EES system using hydrogen, for controlling the water and/or steam flows in the system

Note 1 to entry: It includes the controlling mechanisms of water inlet, transport, purifying (if applicable), and drain.

3.2 Symbols

The symbols and their meanings used in this document are given in Table 1, with the appropriate units.