INTERNATIONAL STANDARD

Thermoplastics pipes for the conveyance of fluids - Nominal outside diameters and nominal pressures -
 iTeh SPart PARID PREVIEW
 (Metriciseriest $\mathrm{Ch} . a \mathrm{i}$)

ISO 161-1:1996
https://standards.iteh.ai/catalog/standards/sist/7994a1 a6-683a-4608-9233-
Tybes eni matières thermoplastiques pour le transport des fluides Diamètres extérieurs nominaux et pressions nominales -
Partie 1: Série métrique

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.
International Standard ISO 161-1 was prepared by Technical Committee VIEW ISO/TC 138, Plastics pipes, fittings and valves for the transport offluids.ai)

This third edition cancels and replaces the second edition (ISO 161-1:1978), which has been technically revised.

ISO 161-1:1996
https///standards.iteh.ai/catalog/standards/sist/7994ala6-683a-4608-9233-
ISO 161 consists of the following parts, under the generap titte-Thernoplastics pipes for the conveyance of fluids - Nominal outside diameters and nominal pressures:

- Part 1: Metric series
- Part 2: Inch-based series

Annex A of this part of ISO 161 is for information only.

[^0]
Introduction

In this part of ISO 161, some of the abbreviations used have been derived from the French language and others from English. It has been agreed to maintain the same abbreviations in both the French and English versions of the document.

For reference, the abbreviations are listed below with the originating language given first and the translation second:

PN: Pression nominale (F)
Nominal pressure (E)
PMS: Pression maximale de service (F)
Maximum allowable operating pressure (E)
iTeh S MRS: Minimumrequired strength (E) W
Résistance minimale requise (F)
(Stalnodigh stresstitelh.aii)
Contrainte de calcul (F)
ISO 161-1:1996
https://standards.iteh.ai/catalog/standards/sist/7994ala6-683a-4608-9233-
900b15012769/iso-161-1-1996

iTelh this page intentionaly left biankE VIIE W
 (standards.iteh.ai)

ISO 161-1:1996
https://standards.iteh.ai/catalog/standards/sist/7994a1 a6-683a-4608-9233-900b15012769/iso-161-1-1996

Thermoplastics pipes for the conveyance of fluids Nominal outside diameters and nominal pressures

Part 1:

Metric series

1 Scope

cation and designation - Overall service (design) coefficient.

This part of ISO 161 specifies the nominal outside diameters for metric thermoplastics pipes for the conveyance of fluids in pressưre and non-pressure applications. It also specifies nominal pressure ratings, minimum required strengths and (overalh service (design) coefficients for thermoplastics pipes for pressure applications.

ISO 161-1:1996
It is applicable to smooththermoprasties pipes of conards/sist/7994ala6-683a-4608-9233stant circular cross-section along the whole length ofiso-16 the pipe, whatever their method of manufacture or material of construction.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 161. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 161 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 3:1973, Preferred numbers - Series of preferred numbers.

ISO 12162:1995, Thermoplastics materials for pipes and fittings for pressure applications - Classifi-
3.1 no 3.
designation of size which is common to all components in a thermoplastics piping system other than flanges and components designated by thread size. It is a convenient round number for reference purposes.

NOTE - For metric pipes conforming to this part of ISO 161, the nominal outside diameter, expressed in millimetres, is the minimum mean outside diameter $d_{\text {em,min }}$ specified in the applicable pipe standard.

3.2 Outside diameter, d_{e}

3.2.1 mean outside diameter, d_{em} : The measured length of the outer circumference of the pipe divided by $\pi^{1)}$, rounded up to the nearest $0,1 \mathrm{~mm}$.
3.2.2 minimum mean outside diameter, $d_{\mathrm{em}, \mathrm{min}}$: The minimum value of the mean outside diameter specified in the applicable pipe standard. It is equal to the nominal outside diameter d_{n}, expressed in millimetres.

[^1]
3.3 Pressure

3.3.1 nominal pressure, PN: An alphanumeric designation related to the mechanical characteristics of the components of a piping system and used for reference purposes. It is a convenient number selected from the R 10 series as defined in ISO 3.

3.3.2 maximum allowable operating pressure,

 $p_{\text {PMS }}$: The allowable pressure in the pipe when the overall service (design) coefficient C has been applied. It is expressed in megapascals.3.4 lower confidence limit, σ_{LCL} : A quantity with the dimensions of stress, in megapascals, which can be considered as a property of the material under consideration and represents the 97,5 \% lower confidence limit of the predicted long-term hydrostatic strength at $20^{\circ} \mathrm{C}$ for 50 years with internal water pressure.
3.5 minimum required strength, MRS: The value of the lower confidence limit $\sigma_{\mathrm{LCL}}^{\circ}$ rounded down to the next value in the R 10 series as defined in ISO 3 when σ_{LCL} is less than 10 MPa or down to the next value in the R 20 series as defined in ISO 3 when $\sigma_{L C L}$ is greater than or equal to 10 MPa . The MRS is expressed as a hoop stress in megapascals. ISO 161-1:1996
https://standards.iteh.ai/catalog/standards/sis $p_{\text {PMS }}=\frac{2 \times \sigma_{S}}{\left.\left(S D^{2}-4\right)^{2}\right)} 08-9233-$ 900b15012769/iso-161-1-1996
3.6 overall service (design) coefficient, C : An overall coefficient with a value greater than 1 , which takes into consideration service conditions as well as properties of the components of a piping system other than those represented in the lower confidence limit.

The minimum values of C for specified materials are given in ISO 12162.
3.7 design stress, σ_{s} : The allowable stress for a given application. It is derived by dividing the MRS by the overall service (design) coefficient C and rounding to the nearest lower value in the R 20 series as defined in ISO 3, i.e.

$$
\sigma_{\mathrm{s}}=\frac{\mathrm{MRS}}{C}
$$

It is expressed in megapascals.
3.8 standard dimension ratio, SDR: The ratio of the nominal outside diameter of a pipe to its nominal wall thickness.

The SDR can be calculated from either of the following equations:

$$
\begin{aligned}
& \mathrm{SDR}=\frac{2 \times \mathrm{MRS}}{C \times p_{\mathrm{PMS}}}+1 \\
& \text { or } \\
& \mathrm{SDR}=\frac{2 \times \sigma_{\mathrm{s}}}{p_{\mathrm{PMS}}}+1
\end{aligned}
$$

where
MRS is the minimum required strength, in megapascals;
$p_{\text {PMS }}$ is the maximum allowable operating pressure, in megapascals;
C is the overall service (design) coefficient;
σ_{s} is the design stress, in megapascals.
For a given SDR, and using the values of MRS and C specified in the applicable product standard, the maximum allowable operating pressure $p_{\text {PMS }}$ can be calculated from either of the following equations:
3.9 hydrostatic stress, σ : The stress induced in the wall of a pipe when the pipe is filled with a fluid under pressure. The hydrostatic stress, expressed in megapascals, is related to the pressure, the wall thickness and the outside diameter of the pipe by the following equation:

$$
\sigma=\frac{p\left(d_{\mathrm{e}}-e\right)}{2 e}
$$

where
p is the hydrostatic pressure, in megapascals;
d_{e} is the outside diameter of the pipe, in millimetres;
e is the wall thickness of the pipe, in millimetres.

4 Nominal outside diameter, d_{n}

The nominal outside diameter d_{n} shall be selected from the values given in table 1 .

Table 1 - Permitted values of nominal outside diameter, d_{n}

2,5	10	40	125	250	500	1000
3	12	50	140	280	560	1200
4	16	63	160	315	630	1400
5	20	75	180	355	710	1600
6	25	90	200	400	800	1800
8	32	110	225	450	900	2000

5 Nominal pressure rating, PN

The nominal pressure rating PN shall be selected from the values given in table 2 .

Table 2 - Permitted values of nominal pressure rating, PN (together with the corresponding values of the maximum allowable operating pressure $p_{\text {PMS }}$)

6 Minimum required strength, MRS

The minimum required strength MRS shall be selected from the values given in table 3.

Table 3 - Permitted values of minimum required strength, MRS

Values in megapascals

1	6,3	20
1,25	8	22,4
1,6	10	25
2	11,2	28
2,5	12,5	31,5
3,15	14	35,5
4	16	40
5	18	

NOTE - The steps between the values from 1 to 10 are based on the R 10 series given in ISO 3 (25 \% increments), whilst the steps between the values greater than 10 are based on the R 20 series (12 \% increments).

PN	bar orep	NT AMPa DA	$\begin{aligned} & \text { RD PRHVIHW } \\ & \text { s.itelh.ai) } \\ & \frac{-1: 1996}{\text { rds/sist/7994a1a6-683a-4608-9233- }} \\ & \text { iso-161-1-1996 } \end{aligned}$
1	1	(st2,1021	
2,5	2,5	0,25	
3,2	3,2	0,32 ISO 16	
4	htt. $4 \cdot / /$ standar	s.iteh.ai/ 0,4 4 log/stand 900 b 15012760	
5	5	0,5	
6	6	0,6	
6,3	6,3	0,63	
8	8	0,8	
10	10	1	
12,5	12,5	1,25	
16	16	1,6	
20	20	2	
- If hi ed from	pressures are re 10 series given	equired, they shall be in ISO 3.	

Annex A
 (informative)

Bibliography

[1] ISO 161-2:1996, Thermoplastics pipes for the conveyance of fluids - Nominal outside diameters and nominal pressures - Part 2: Inch-based series.
[2] ISO 497:1973, Guide to the choice of series of preferred numbers and of series containing more rounded values of preferred numbers.
[3] ISO 4065:1996, Thermoplastics pipes - Universal wall thickness table.

iTeh STANDARD PREVIEW (standards.iteh.ai)

iTelh this page intentionaly left biankE VIIE W
 (standards.iteh.ai)

ISO 161-1:1996
https://standards.iteh.ai/catalog/standards/sist/7994a1 a6-683a-4608-9233-900b15012769/iso-161-1-1996

[^0]: © ISO 1996
 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

 International Organization for Standardization
 Case Postale $56 \cdot \mathrm{CH}-1211$ Genève 20 - Switzerland
 Printed in Switzerland

[^1]: 1) The value of π is taken to be 3,142 .
