INTERNATIONAL STANDARD

Second edition 1997-04-01

Rubber compounding ingredients — Sulfur — Methods of test

iTeh STANDARD PREVIEW

Ingrédients de mélange du caoutchouc — Soufre — Méthodes d'essai (Standards.iten.ai)

<u>ISO 8332:1997</u> https://standards.iteh.ai/catalog/standards/sist/221e2c79-e3aa-4ff9-a638-4489c51ca223/iso-8332-1997

Reference number ISO 8332:1997(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 8332 was prepared by Technical Committee IEW ISO/TC 45, Rubber and rubber products, Subcommittee SC 3, Raw materials (including latex) for use in the rubber industry. ds.iteh.ai)

This second edition cancels and replaces the first edition (ISO 8332:1993), in which the methods for the determination of the thermal reversion of insoluble sulfur have been revised (for details, see subclause 28.1r2of this aa-4f9-a638edition). 4489c51ca223/iso-8332-1997

Annexes A and B of this International Standard are for information only.

© ISO 1997

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case postale 56 • CH-1211 Genève 20 • Switzerland

Internet central@iso.ch

X.400 c=ch; a=400net; p=iso; o=isocs; s=central

Printed in Switzerland

Introduction

There are two main types of sulfur, viz:

- a) rhombic sulfur;
- b) insoluble sulfur (sometimes referred to as amorphous sulfur).

Both types of sulfur can be used as a rubber compounding ingredient either in their natural form or with oil added. Sulfur may also be coated with, for example, magnesium carbonate or silica. These additives act as an aid to dispersion in the rubber compound. Sulfur is available in varying degrees of fineness. Insoluble sulfur may also contain an amount of rhombic sulfur, as insoluble sulfur tends to revert back to the rhombic state on storage.

These considerations are each the subject of the methods of test specified in this International Standard.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 8332:1997</u> https://standards.iteh.ai/catalog/standards/sist/221e2c79-e3aa-4ff9-a638-4489c51ca223/iso-8332-1997

iTeh This page intentionally left blankEVIEW (standards.iteh.ai)

<u>ISO 8332:1997</u> https://standards.iteh.ai/catalog/standards/sist/221e2c79-e3aa-4ff9-a638-4489c51ca223/iso-8332-1997

Rubber compounding ingredients — Sulfur — Methods of test

WARNING — Persons using this International Standard should be familiar with normal laboratory practice. The standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions.

1 Scope iTeh STANDARD PREVIEW

This International Standard specifies methods of test for determining the main physical and chemical properties of sulfur used for compounding dry rubber. **Standards.iten.al**

NOTE — The typical levels for the relevant properties of sulfur for use as a rubber compounding ingredient are contained in annex A. This annex is not an integral part of the Standard, however, t/221e2c79-e3aa-4ff9-a638-

4489c51ca223/iso-8332-1997

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 565:1990, Test sieves — Metal wire cloth, perforated metal plate and electroformed sheet — Nominal sizes of openings.

ISO 842:1984, Raw materials for paints and varnishes - Sampling.

ISO 2590:1973, General method for the determination of arsenic — Silver diethyldithiocarbamate photometric method.

ISO 3425:1975, Sulphur for industrial use — Determination of ash at 850-900 °C and of residue at 200 °C.

ISO 3426:1975, Sulphur for industrial use — Determination of loss in mass at 80 °C.

ISO 3704:1976, Sulphur for industrial use — Determination of acidity — Titrimetric method.

ISO 3705:1976, Sulphur for industrial use — Determination of arsenic content — Silver diethyldithiocarbamate photometric method.

ISO 4793:1980, Laboratory sintered (fritted) filters - Porosity grading, classification and designation.

ISO/TR 9272:1986, Rubber and rubber products — Determination of precision for test method standards.

3 Physical and chemical properties

After sampling with a stainless-steel sampling tool in accordance with ISO 842, the physical and chemical properties of sulfur used as a rubber compounding ingredient shall be determined by the following test methods:

...

Property	lest method
Total sulfur [% (m/m)]	Clause 4
Fineness (sieve residue)	Clause 5
Oil content [% (<i>m/m</i>)]	Clause 6
Insoluble sulfur [% (<i>m/m</i>)]	Clause 7
Thermal reversion (%)	Clause 8
Acidity [as H_2SO_4 , % (<i>m/m</i>)]	ISO 3704
Loss in mass at 80 $^{\circ}$ C [% (<i>m</i> / <i>m</i>)]	ISO 3426
Ash [% (<i>m/m</i>)]	ISO 3425
Arsenic [% (<i>m/m</i>)]	ISO 3705, ISO 2590

of this International Standard

4 Determination of total sulfur content

4.1 Principle

The sulfur in a test portion is first converted to thiosulfate which is then determined by titration with an iodine solution.

4.2 Reagents iTeh STANDARD PREVIEW

During the analysis, use only reagents of recognized analytical grade and only distilled water or water of equivalent purity.

- **4.2.1** Sodium sulfite solution, 50 g/dm³. Dissolve 50 g of sodium sulfite in 1 dm³ of water.
- **4.2.2** Standard volumetric iodine solution, $c(l_2) = 0,05$ mol/dm³, freshly prepared and standardized.
- 4.2.3 Formaldehyde solution, 40 % (V/V).
- 4.2.4 Glacial acetic acid.

4.2.5 Wetting-out solution, consisting of a 20 g/dm³ solution of an alkylaryl sulfonate (e.g. sodium dodecylbenzene sulfonate) in water.

4.2.6 Soluble-starch solution, freshly prepared.

4.3 Procedure

4.3.1 Weigh, to the nearest 0,1 mg, 0,2 g of the sulfur sample (m_0) on a tared watch glass. Using a Pasteur pipette, add approximately 1 cm³ of wetting solution (4.2.5). Transfer the mixture to a 250 cm³ flask via a small glass funnel using a stream of the sodium sulfite solution (4.2.1) from a 50 cm³ measuring cylinder. Add a few antibumping granules, fix an air condenser in position and place the whole on an electrically heated sand-bath.

Adjust the sand-bath temperature control so that the contents of the flask simmer gently. It is most important to ensure that frothing or the formation of large bubbles is avoided, otherwise particles of sulfur can migrate up the walls of the flask and into the condenser, where they no longer react.

4.3.2 After 2 h, the sulfur will have dissolved. [The time to achieve complete dissolution is dependent on the size of the sample particles. To ensure a reaction time of 2 h, it is necessary either to pre-grind the sample to pass through a 125 μ m screen (see ISO 565) or to know in advance that the sample meets this requirement.]

Remove the flask and cool it to 15 °C. Wash the walls of the condenser with water and collect the washings in the flask. Remove the condenser. Transfer the contents of the flask into a 100 cm³ graduated flask. Wash out the sample flask with water and add the washings to the graduated flask. Make up to the 100 cm³ mark with water. Stopper and shake to make homogenous.

4.3.3 Pipette 25 cm³ of the test solution thus prepared into a 250 cm³ conical flask. Measure out and add 10 cm³ of the formaldehyde solution (4.2.3), 25 cm³ of acetic acid (4.2.4) and 1 cm³ of the starch solution (4.2.6). Cool to 15 °C, then titrate with the iodine solution (4.2.2) from a burette until a blue colour is obtained which persists for 15 s. Repeat the titration with two further 25 cm³ portions of the test solution and average the results for the calculation.

4.3.4 Carry out a blank determination omitting the test portion.

4.4 Expression of results

Calculate the total sulfur content, expressed as a percentage by mass, from the formula

$$\frac{\left(V_1 - V_0\right)c \times 4 \times 6,4}{m_0}$$

where

- V_0 is the volume, in cubic centimetres, of iodine solution (4.2.2) used to titrate the blank (see 4.3.4);
- V_1 is the volume, in cubic centimetres, of iodine solution (4.2.2) used to titrate the test portion (see 4.3.3);
- c is the exact concentration, in moles of l2 per cubic decimetre, of the iodine solution (4.2.2);
- m_0 is the mass, in grams, of the test portion (see 4.3.1). **iteh.ai**)

4.5 Test report

<u>ISO 8332:1997</u>

https://standards.iteh.ai/catalog/standards/sist/221e2c79-e3aa-4ff9-a638-The test report shall include the following particulars:a223/iso-8332-1997

- a) a reference to this International Standard;
- b) all details necessary for the identification of the sample;
- c) the total sulfur content;
- d) the date of the test;
- e) details of any deviation from the standard test procedure.

5 Determination of sieve residue

5.1 Principle

A test portion is passed through sieves of specified mesh opening and the residue retained is weighed.

Two procedures are specified, viz:

- a) a wet procedure for all oil-treated grades of sulfur;
- b) a dry procedure for all other (i.e. non-oil-treated) grades.

In the case of extremely fine grade sulfurs, the wet procedure shall be used.

5.2 Wet procedure

5.2.1 Apparatus

5.2.1.1 Metal funnel (A), about 200 mm in diameter, terminating at the foot in a short cylindrical outlet (see figure 1) in which is inserted a shallow removable cup (B), on the bottom of which a wire-cloth sieve (C) (5.2.1.2) is soldered; this is 25 mm in diameter. Water under pressure is supplied by a tube (D) fitted with a nozzle designed to discharge a spreading jet through the sieve; the distance of the orifice from the sieve can be adjusted. The recommended minimum water pressure is 200 kPa (2 bar). The tube is provided with a filter (H) to remove any solid particles from the water; this filter shall be made from wire cloth at least as fine as the sieve (C), and shall be sufficiently large to prevent undue loss of pressure.

A similar arrangement is provided for another tube (E) used to supply a gentle stream of water for wetting the powder and keeping the volume of the liquid in the funnel constant during the test.

Figure 1 — Apparatus for determination of sieve residue (wet procedure)

5.2.1.2 Two sieves, of woven metal-wire cloth, having openings of nominal width 180 μ m and 125 μ m respectively, in accordance with ISO 565.

5.2.1.3 Flat brush, of camel hair, approximately 25 mm wide.

5.2.2 Determination

Mount a sieve cup with a sieve (5.2.1.2) of the required mesh, as agreed between the interested parties, in the apparatus. Allow water to flow through it for 3 min from tubes D and E. Examine the sieve for particles; if none are observed, the apparatus is ready for use. Dry the sieve cup at 105 °C \pm 2 °C, weigh to 0,1 mg and mount in the apparatus, holding in place by union nut G. Weigh out about 25 g (m_0) of the sample accurately to 0,1 g, make into a slurry with 300 cm³ of ethyl alcohol (industrial grade) in a beaker, and transfer quantitatively to the funnel (5.2.1.1).

NOTE 1 If the oil content of the sulfur is higher than 20 % (m/m), then a 20 g/dm³ solution of alkylaryl sulfonate in water may be used instead of the ethyl alcohol.

About half fill the funnel with water from tube E. Slowly turn the high-pressure jet D on full and adjust the position of the nozzle under the liquid, in relation to the sieve, until there is little or no disturbance on the surface and the level is, if anything, sinking. Now use the supply from tube E to maintain the level constant, and wash down any solid matter adhering to the sides.

NOTE 2 When the best operating conditions have been so attained, the discharge pipe F below the sieve is completely filled with water; increasing the length of this column of liquid by adding a length of rubber tubing improves the efficiency of the apparatus.

Take a sample of the issuing water from time to time during the test and, when this is free from suspended matter, reduce the rate of flow from the jet. Wash down any residual material adhering to the sides of the funnel into the lower portion of the apparatus, and then adjust the jet to a rate which keeps the cylindrical portion full of violently agitated water. When the residual matter has been thoroughly washed in this way until the effluent runs clear (usually 3 or 4 minutes), turn off the jet and wash the grit down into the cup. Inspect the remaining sulfur and break up any loose agglomerates by brushing lightly with the camel-hair brush (5.2.1.3), subsequently washing them through the filter. Then wash the remaining grit into the cup.

Unscrew the milled union nut G, remove the discharge pipe and cup, and wash the contents of the latter with distilled water. Dry the cup and contents at 105 °C ± 2 °C and weigh to 0,1 mg. This mass, less the initial mass of the cup, equals the mass of the sieve residue (m_1).

5.2.3 Expression of results (wet procedure)

Calculate the sieve residue, expressed as a percentage by mass, using the formula/

 $\frac{m_1 \times 100}{m_0}$

(standards.iteh.ai)

where

<u>ISO 8332:1997</u>

https://standards.iteh.ai/catalog/standards/sist/221e2c79-e3aa-4ff9-a638-

- m_0 is the mass, in grams, of the test portion;
- m_1 is the mass, in grams, of the residue on the sieve.

5.3 Dry procedure

5.3.1 Apparatus

5.3.1.1 Test-sieve assembly, of 200 mm diameter, having a fitting lid and receiver, with three sieves of aperture size 180 μ m, 125 μ m and 63 μ m respectively, in accordance with ISO 565.

The sieves shall be of stainless-steel wire and shall fit together, one above the other, so that powder does not escape.

5.3.1.2 Mechanical sieve shaker, suitable for the sieve assembly (5.3.1.1), providing a gyrating and jolting action, preferably with an automatic timing device.

5.3.1.3 Analytical balance, accurate to 1 mg.

5.3.1.4 Flat brush, of camel hair, approximately 25 mm wide.

5.3.1.5 Three weighing bottles, two of capacity approximately 10 cm³ and the third approximately 100 cm³, with stoppers.

5.3.1.6 Sheets of glazed A4 paper.

5.3.1.7 Lightweight rubber-covered hammer.

5.3.2 Determination

Ensure that the three sieves (5.3.1.1) are free from any pervious residue by brushing with the camel-hair brush (5.3.1.4) and by blowing the sieves through with compressed air from above, with the sieve inverted, and tapping the sieve to dislodge any particles lodged in the mesh.

Fit the sieves one above the other with the largest-aperture sieve (180 μ m) on top, then below it the sieve with the medium-size apertures (125 μ m) and at the bottom the sieve with the smallest apertures (63 μ m). Fit the receiver below the bottom sieve.

Blend the total sample, obtained in accordance with ISO 842 (using stainless-steel sampling tools), to ensure that finer and coarser particles are not segregated, then weigh out, to the nearest 1 mg, about 50 g of the representative sample, using the 100 cm³ weighing bottle (5.3.1.5).

Pour the test portion thus obtained on to the top sieve and fit the lid. Reweigh the weighing bottle empty to obtain the mass of the test portion (m_0) by difference.

Install the sieve assembly in the mechanical shaker (5.3.1.2) (if available) and allow to shake for 5 min at a rate of 3 Hz (three shakes per second), then remove from the shaker. If no mechanical shaker is available, manually shake the stack for 5 min horizontally through an amplitude of 150 mm at a rate of 3 Hz, stopping after each minute to strike the base of the stack with the rubber-covered hammer (5.3.1.7) to help clear any blockages in the sieves.

Remove the lid and inspect the top sieve (180 μ m). If material remains held on the top sieve, break up any loose agglomerates by brushing lightly with the camel-hair brush (5.3.1.4). Replace the lid, then lift the top sieve off the next sieve (125 μ m) and similarly brush lightly any residue on this sieve. Then re-stack as before and shake mechanically or manually as before for a further 5 min.

Separate the stack of sieves completely and one at a time carefully transfer all the material held on each sieve to a clean, dry weighing bottle, previously weighted empty to 1 mg. (Use 10 cm³ weighing bottles for the residues on the 180 μ m and 125 μ m sieves, and a 100 cm³ weighing bottle for the residue on the 63 μ m sieve.) To ensure complete transfer from sieve to weighing bottle, carefully pour the contents of each sieve on to a sheet of clean, glazed paper (5.3.1.6), then invert the sieve over the paper and stap lightly with the rubber-covered hammer to dislodge any jammed particles. Then remove the sieve and carefully lift the sheet of paper, form it into a chute and carefully pour the material on it into the weighing bottle, avoiding losses 3/iso-8332-1997

Finally, weigh each weighing bottle plus sieve residue to 1 mg and calculate the mass of the residue found on each sieve $(m_1, m_2 \text{ and } m_3)$.

5.3.3 Expression of results (dry procedure)

Calculate the residue on the 180 µm sieve, expressed as a percentage by mass, using the formula

$$\frac{m_1 \times 100}{m_0}$$

Calculate the total residue on both the 180 μ m and 125 μ m sieves, expressed as a percentage by mass, using the formula

$$\frac{\left(m_1+m_2\right)\times 100}{m_0}$$

Calculate the total residue on all three sieves, expressed as a percentage by mass, using the formula

$$\frac{\left(m_1+m_2+m_3\right)\times100}{m_0}$$

where

- m_0 is the mass, in grams, of the test portion;
- m_1 is the mass, in grams, found on the 180 μ m sieve;

- m_2 is the mass, in grams, found on the 125 μ m sieve;
- m_3 is the mass, in grams, found on the 63 μ m sieve.

5.4 Test report

The test report shall include the following particulars:

- a) a reference to this International Standard and the procedure used (wet or dry);
- b) all details necessary for the identification of the sample;
- c) wet method: the percentage residue retained on the sieve used; dry method: the cumulative totals for each sieve;
- d) the date of the test;
- e) details of any deviation from the standard test procedure.

6 Determination of oil content of oil-treated sulfur

6.1 Principle

Oil is extracted from the sample by using a solvent, and the solvent is then evaporated off and the mass of residual oil determined.

Two procedures are specified, viz:

- a) a procedure using hexane for mombic sulfur;
- b) a procedure using sulfur-saturated (exame for insoluble sulfur.ai)

·<u>ISO 8332:1997</u>

- **6.2 Hexane procedure** tps://standards.iteh.ai/catalog/standards/sist/221e2c79-e3aa-4ff9-a638-4489c51ca223/iso-8332-1997
- 6.2.1 Reagent
- 6.2.1.1 Hexane, reagent grade.

6.2.2 Determination

Weigh to the nearest 1 mg, about 10 g of the sample (m_0) into a wide-mouthed 250 cm³ conical flask and add, by pipette, exactly 100 cm³ of hexane (6.2.1.1). Stopper and allow to stand at room temperature for 30 min, swirling the flask every 5 min. Decant 75 cm³ of the solution thus obtained into a 100 cm³ beaker, ensuring that no particles of sulfur are present, and pipette 50 cm³ of this solution into another 100 cm³ beaker. Evaporate off the solvent from this 50 cm³ of solution by placing the beaker in a water bath in a fume cupboard. Remove the beaker from the water bath and allow to cool to room temperature. Extract the residue with 2 cm³ of hexane, measuring the solvent from a burette and adding it in such a way that the sides of the beaker are washed down. Swirl the beaker gently to disperse the residue with the solvent. Decant the solution into a 50 cm³ beaker previously weighed to 1 mg (m_4).

Repeat the extraction twice, collecting all the washings in the 50 cm³ beaker. Evaporate off the solvent in a water bath and then in an oven at 80 °C for 1 h in a fume cupboard. Cool in a dessicator and then weigh immediately to 1 mg (m_5).

6.2.3 Expression of results

Calculate the oil content, expressed as a percentage by mass, using the formula

$$\frac{2(m_5-m_4)\times 100}{m_0} - 0,20$$