

IEC TS 62607-6-13

Edition 1.0 2020-07

TECHNICAL SPECIFICATION

Nanomanufacturing ekey control characteristics EVIEW Part 6-13: Graphene powder – Oxygen functional group content: Boehm titration method

<u>IEC TS 62607-6-13:2020</u> https://standards.iteh.ai/catalog/standards/sist/a5cc44fd-cb6b-45b2-9529f787548f3e09/iec-ts-62607-6-13-2020

THIS PUBLICATION IS COPYRIGHT PROTECTED Copyright © 2020 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Tel.: +41 22 919 02 11 info@iec.ch www.jec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee,...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished Stay up to date on all new IEC publications. Just Published

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

 IEC Customer Service Centre - webstore iecch/csc and collected from this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.
 collected from this publication or CISPR.

 IEC TS 62607-6-13:2020

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 000 terminological entries in English and French, with equivalent terms in 16 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary

67 000 electrotechnical terminology entries in English and French extracted from the Terms and Definitions clause of IEC publications issued since 2002. Some entries have been collected from earlier publications of IEC TC 37, 77, 86 and CISPR.

https://standards.iteh.ai/catalog/standards/sist/a5cc44fd-cb6b-45b2-9529

f787548f3e09/iec-ts-62607-6-13-2020

Edition 1.0 2020-07

TECHNICAL SPECIFICATION

Nanomanufacturing - Key control characteristics EVIEW Part 6-13: Graphene powder - Oxygen functional group content: Boehm titration method

<u>IEC TS 62607-6-13:2020</u> https://standards.iteh.ai/catalog/standards/sist/a5cc44fd-cb6b-45b2-9529f787548f3e09/iec-ts-62607-6-13-2020

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 07.120

ISBN 978-2-8322-8726-2

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	DREWORD	4		
IN	TRODUCTION	6		
1	Scope	7		
2	Normative references	7		
3	Terms, definitions, symbols and abbreviated terms	7		
	3.1 Terms and definitions	8		
	3.1.1 General terms	8		
	3.1.2 Key control characteristics measured according to this document	9		
	oxygen functional group	9		
	3.1.3 Terms related to the measurement method	9		
	3.2 Symbols and abbreviated terms	9		
4	General	9		
	4.1 Measurement principle	9		
	4.2 Sample preparation method	10		
	4.3 Description of measurement equipment / apparatus	11		
	4.3.1 Analytical balance, readability is 0,1 mg	11		
	4.3.2 Electric thermostatic drying oven	11		
	4.3.3 Numerical control magnetic agitator/oscillator	11		
	4.3.4 Automatic potentiometer, with pH electrode and accurate to 0,1 mV	11		
	4.3.5 HDPE bottles, the volume are 1 000 mb and 100 mL, with stopper	11		
	4.4 Supporting materials	11		
	4.5 Ambient conditions during measurement 13:2020	11		
5	Measurement procedurerds.teh.a/catalog/standards/sist/a5cc44td-cb6b-45b2-9529- f787548f3e09/jec-ts=62607-6-13-2020	11		
	5.1 Detailed protocol of the measurement procedure	11		
	5.1.1 Preparation of solutions	11		
	5.1.2 Reactions between graphene and bases	13		
	5.1.3 Instrument preparation	13		
	5.1.4 Litration of the filtrate	13		
	5.2 Measurement uncertainty	14		
6	5.5 Operation procedure, key control steps and case study	14		
0		14		
	6.1 Normalized base consumption	14		
7	6.2 Oxygen functional group content	15		
1		15		
	7.1 General	15		
	7.2 Product/sample identification	.15		
۸,	7.3 Test results	. 15		
AI	A 4 Or exertise areas dure	10		
	A.1 Operation procedure	. 10		
۸.	A.2 Key control steps	. 17		
A	inex B (informative) influence of CO ₂	10		
	B.1 Effect of CO ₂ on titration of base concentration	18		
	B.2 Effect of CO ₂ on base consumption	19		
Annex C (informative) Lower limit of determination20				
	C.1 Experiment of lower mass of reacted sample A	20		

C.2	Determination of detection limits	20
Annex D ((informative) Test report	23
D.1	Example of a test record	23
D.2	Format of the test report	23
Annex E (informative) Case study	25
E.1	Preparation of solution	25
E.2	Sample preparation	25
E.3	Reactions between graphene and bases	25
E.4	Titration of the filtrate	26
E.5	Calculation	
E.6	Test report	
Bibliography		

Figure 1 – Test principle of Boehm titration	10
Figure A.1 – Operation procedure	16
Figure A.2 – Key control steps	17
Figure B.1 – Titration curves of NaOH solution	18
Figure C.1 – The normalized base consumption of different amounts of sample A	20
Figure E 1 – Titration curves of A0 filtrate (upper left), B0 filtrate (upper right), C0 filtrate (lower left), and D0 filtrate (lower right)	27

(standards.iteh.ai)

Table 1 – Four types of oxygen functional group and their structures	10
Table 2 – Reagents used in this documents <u>62607-6-13:2020</u>	11
Table B.1 - Titration results of back titration and direct titration of NaOH solution	19
Table B.2 – Results of base consumption of NaOH with and without bubbling N ₂	19
Table C.1 – Base consumption result of sample A	21
Table C.2 – Oxygen functional group content result	22
Table C.3 – Detection limits for different sample amounts	22
Table D.1 – Data for calibration of titrant acid	23
Table D.2 – Data for Boehm titration	23
Table D.3 – Product identification (according to IEC 62565-3-1)	24
Table D.4 – General material description (according to IEC 62565-3-1)	24
Table D.5 – Measurement results	24
Table E.1 – Measurement data	27
Table E.2 – Normalized base consumption of sample 1	29
Table E.3 – Product identification of sample 1	
Table E.4 – General material description of sample 1	
Table E.5 – Measurement results of sample 1	30

INTERNATIONAL ELECTROTECHNICAL COMMISSION

NANOMANUFACTURING – KEY CONTROL CHARACTERISTICS –

Part 6-13: Graphene powder – Oxygen functional group content: Boehm titration method

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and sim some areas access to IEC marks of conformity IEC is not responsible for any services carried out by independent certification bodies 62607-6-13-2020
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a Technical Specification when

- the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or
- the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard.

Technical Specifications are subject to review within three years of publication to decide whether they can be transformed into International Standards.

IEC TS 62607-6-13, which is a Technical Specification, has been prepared by IEC technical committee 113: Nanotechnology for electrotechnical products and systems.

IEC TS 62607-6-13:2020 © IEC 2020 - 5 -

The text of this Technical Specification is based on the following documents:

Draft TS	Report on voting
113/455/DTS	113/486/RVDTS

Full information on the voting for the approval of this Technical Specification can be found in the report on voting indicated in the above table.

This document has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 62607 series, published under the general title *Nanomanufacturing – Key control characteristics*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under "http://webstore.iec.ch" in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

iTeh STANDARD PREVIEW

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

f787548f3e09/iec-ts-62607-6-13-2020

INTRODUCTION

In recent years, graphene has attracted extensive attention from academia and industry, due to the extraordinary physical and chemical properties for promising applications in energy conversion and storage, electronics, composites and catalysis, etc. In the case of most graphene available in the laboratory or on the market, oxygen functional groups are inevitable, especially for the powder form products. These oxygen functionalities, which exist mainly in the form of carboxyl groups, lactones or lactols, phenolic hydroxyl groups, reactive carbonyl groups and epoxide groups, etc., are located on the surface or edge of the two-dimensional carbon lattice. They affect many crucial properties of graphene, including wettability, electrical and thermal conductivity, electron density, acidity and reactivity, etc. [1][2][3][4]¹, and so determine the performance of graphene for downstream applications. For example, in an energy storage device such as lithium ion battery or supercapacitor, the oxygen heteroatoms will introduce irreversible reaction to exhaust the organic electrolyte and emit small molecules, which will reduce the cycling stability and even cause safety problems to the final products [5][6]. Besides, the oxygen functional groups will significantly decrease the electrical conductivity of graphene. which has a negative impact on the rate capacity of the cell, due to the increase of internal resistance for the electrode [7][8]. Furthermore, the different oxygen containing functional groups will play very different roles in affecting the properties of graphene. For example, in catalysis, graphene has been employed as an effective solid acid catalyst for hydrocarbon chemistry, as many oxygen functionalities show acidic properties [9][10][11]. However, the acidity strength of different oxygen species is distinct, as the acidity sequence is carboxyl, lactone, hydroxyl, and carbonyl. Besides, it is proved that ketonic carbonyl groups, with higher electron density, are the catalytic active sites for oxidative dehydrogenation reactions [12][13]. So, the type and proportion of oxygen groups will significantly influence the catalytic activity and selectivity of graphene. Therefore, the qualification of different oxygen functional groups on the surface of graphene is a key control characteristic for the production, application and trading of graphene and related products. at us. Item. at

The most common methods for identification and quantification of oxygen functional groups on graphene are FT-IR, XPS, EELS and Boehm titration. Moreover, other recent methods such as SAED, MS and FLOSS are springing up? However, some of these methods have difficulty quantifying oxygen functional groups on graphene, and there is no standard method to quantify the oxygen functional groups. Boehm titration, dating from 1962, is an efficient, repeatable and easy to operate method with low cost. More importantly, the Boehm titration method can provide absolute values of the surface concentration of oxygen functional groups and avoid the ambiguity and subjectivity brought by spectroscopies, which shows its unique advantage in quantification of many oxygen functional groups on graphene [14][15][16][17][18][19][20]. Note that Boehm titration cannot determine the total oxygen content of a powder, as it only measures those functional groups that can dissociate under the conditions of the test.

Boehm titration has been applied to determine the oxygen functional groups of many traditional carbonaceous materials for decades, such as activated carbon and carbon black. In recent years, it was applied to graphene [21][22]. Because the physical properties of graphene are very different from those of other carbonaceous materials, the operation-specific details in this document are suitable for powders of graphene oxide, reduced graphene oxide, graphene and related materials only. When applying Boehm titration to graphene dispersions, the dispersion medium needs to be removed. This document can be used as the reference for other carbonaceous materials.

This document focuses on the determination of oxygen functional groups and standardization of the operation method. Due to various steps such as agitation, end-point determination, etc. required in Boehm titration, significant measurement errors can be introduced if not properly addressed.

¹ Numbers in square brackets refer to the Bibliography.

NANOMANUFACTURING – KEY CONTROL CHARACTERISTICS –

Part 6-13: Graphene powder – Oxygen functional group content: Boehm titration method

1 Scope

This part of IEC TS 62607 establishes a standardized method to determine the chemical key control characteristic

- oxygen functional group content
 - on graphite oxide, graphene oxide, reduced graphene oxide and other types of functionalized graphene by
- Boehm titration method.

In this document, the measured functional groups are carboxyl groups (also in the form of their cyclic anhydrides), lactone groups, hydroxyl groups and reactive carbonyl groups. Oxygen functional groups that exhibit no reactivity such as epoxides cannot be measured.

The oxygen functional group content is derived by the difference between NaHCO₃, Na₂CO₃, NaOH and C₂H₅ONa consumption of dispersed graphene powders.

standards.iteh.ai

- The oxygen functional group content determined according to this document is listed as key control characteristic in the blank detail specification for graphene IEC 62565-3-1.
- The method is applicable for graphene powder and graphene related carbon 2D materials such as graphene oxide powder and reduced graphene oxide powder, which can be separated from the water and ethanol by centrifugation or filtration. This document is not applicable for sulfonate modified graphene.
- In this document, the lower limits of detection (Annex C) for carboxyl groups, lactone groups, hydroxyl and carbonyl are 0,015 mmol/g, 0,037 mmol/g, 0,014 mmol/g, and 0,072 mmol/g, respectively.
- This document targets graphene manufacturers and downstream users to guide their material design, production and quality control.

2 Normative references

There are no normative references in this document.

3 Terms, definitions, symbols and abbreviated terms

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

3.1 Terms and definitions

3.1.1 General terms

3.1.1.1 blank detail specification BDS

structured generic specification of the set of key control characteristics which are needed to describe a specific nano-enabled product without assigning specific values and/or attributes

Note 1 to entry The templates defined in a blank detail specification list the key control characteristics for the nanoenabled material or product without assigning specific values to it.

Note 2 to entry Examples of nano-enabled products are: nanomaterials, nanocomposites and nano-subassemblies.

Note 3 to entry Blank detail specifications are intended to be used by industrial users to prepare their detail specifications used in bilateral procurement contracts. A blank detail specification facilitates the comparison and benchmarking of different materials. Furthermore, a standardized format makes procurement more efficient and more error robust.

3.1.1.2 graphene graphene layer single-layer graphene monolayer graphene 1LG single layer of carbon

single layer of carbon atoms with each atom bound to three neighbours in a honeycomb structure

Note 1 to entry It is an important building block of many carbon nano-objects.

Note 2 to entry As graphene is a single layer, it is also sometimes called monolayer graphene or single-layer graphene and abbreviated as 1LG to distinguish it from Bilayer graphene (2LG) and few-layered graphene (FLG). https://standards.iteh.ai/catalog/standards/sist/a5cc44fd-cb6b-45b2-9529-

Note 3 to entry Graphene has edges and can have defects and grain boundaries where the bonding is disrupted.

[SOURCE: ISO/TS 80004-13:2017 [23], 3.1.2.1]

3.1.1.3 graphene oxide GO

chemically modified graphene prepared by oxidation and exfoliation of graphite

[SOURCE: ISO/TS 80004-13:2017, 3.1.2.13, modified – ", causing extensive oxidative modification of the basal plane" has been deleted from the end of the definition.]

3.1.1.4 reduced graphene oxide rGO reduced oxygen content form of graphene oxide

[SOURCE: ISO/TS 80004-13:2017, 3.1.2.14]

3.1.1.5 graphene nanoplate nanoplate consisting of graphene layers

[SOURCE: ISO/TS 80004-13:2017, 3.1.2.11]

3.1.2 Key control characteristics measured according to this document

3.1.2.1 key control characteristic KCC

key performance indicator

material property or intermediate product characteristic which can affect safety or compliance with regulations, fit, function, performance, quality, reliability or subsequent processing of the final product

Note 1 to entry The measurement of a key control characteristic is described in a standardized measurement procedure with known accuracy and precision.

Note 2 to entry It is possible to define more than one measurement method for a key control characteristic if the correlation of the results is well-defined and known.

Note 3 to entry In ISO TC 16949 (now IATF 16949), the term "special characteristic" is used for a KCC. The term key control characteristic is preferred since it signals directly the relevance of the parameter for the quality of the final product.

3.1.2.2

functional group

atom, or a group of atoms that has similar chemical properties whenever it occurs in different compounds, which defines the characteristic physical and chemical properties of families of organic compounds

[SOURCE: IUPAC] iTeh STANDARD PREVIEW

(standards.iteh.ai)

oxygen functional group

functional group containing oxygen atom IEC TS 62607-6-13:2020

sist/a5cc44fd-cb6b-45b2-9529-

Terms related to the measurement method 2020 3.1.3

3.1.3.1

3.1.2.3

Boehm titration method

method to identify and quantify the functional groups through neutralization between oxygen functional groups of different acidity and bases of different strength

Note 1 to entry Oxygen functional groups usually influence or determine the chemical and physical properties of organic compound.

Note 2 to entry: See [14] and [15].

Symbols and abbreviated terms 3.2

- HDPE high-density polyethylene
- ΔE differential of potential to titrant volume
- relative standard deviation RSD

General 4

4.1 Measurement principle

Oxygen functional groups on graphene of different acidities can be neutralized by bases of different strengths (Figure 1). Sodium ethoxide (C_2H_5ONa) is the strongest base used here that can neutralize acids including carboxyl groups (also in the form of their cyclic anhydrides), lactone groups, hydroxyl groups and reactive carbonyl groups. Sodium hydroxide (NaOH) is the second strongest base that can neutralize carboxyl groups (also in the form of their cyclic anhydrides), lactone groups and hydroxyl groups. Sodium carbonate (Na₂CO₃) neutralizes lactone groups and carboxyl groups (also in the form of their cyclic anhydrides). And sodium

bicarbonate (NaHCO₃) is the weakest base used here that neutralizes carboxyl groups (also in the form of their cyclic anhydrides) only. Therefore, the content of each type of oxygen functional group (mmol/g) can be determined from the difference between the normalized base consumptions η (mmol/g), which are derived by dividing total base consumption (mmol) by mass of reacting sample (g). For example, the difference between NaOH normalized consumption (η_{NaOH}) and Na₂CO₃ normalized consumption (η_{Na2CO3}) corresponds to the weakly acidic hydroxyl group content. These four kinds of functional group (Table 1) can be differentiated by neutralization with 0,05 mol/L solutions of NaHCO₃, Na₂CO₃, NaOH and 0,1 mol/L sodium ethoxide, respectively.

Figure - Test principle of Boehm titration

Table 1 – Four types of oxygen functional group and their structures

	Term <u><u>FC TS 6260</u></u>	<u>7-6-13:209tr</u> ucture	
https:/	/standards.iteh.ai/catalog/standa	rds/sist/a5cc4ofd-cb6b-45b2-9	9529-
	Carboxyf787548f3e09/iec-ts	-62607-6-13-2020	
		ROH	
	Lactone		
	Hydroxyl	PhOH	
	Carbonyl	R ₁ R ₂	

4.2 Sample preparation method

All the test specimens need to be dried prior to testing to remove residual moisture. Keep graphene sample in a vacuum oven at (80 ± 5) °C until it is completely dry. Then cool it to room temperature and store in a desiccator for use.