INTERNATIONAL STANDARD

ISO 14595

First edition 2003-06-01

Microbeam analysis — Electron probe microanalysis — Guidelines for the specification of certified reference materials (CRMs)

Analyse par microfaisceaux — Microanalyse par sonde à électrons — Lignes directrices pour les spécifications des matériaux de référence

iTeh STATILES CRAND PREVIEW (standards.iteh.ai)

<u>ISO 14595:2003</u> https://standards.iteh.ai/catalog/standards/sist/dcdf806c-2488-4faf-ab69-f133969358f1/iso-14595-2003

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 14595:2003 https://standards.iteh.ai/catalog/standards/sist/dcdf806c-2488-4faf-ab69-f133969358f1/iso-14595-2003

© ISO 2003

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Cont	ents	Page
Foreword		
Introdu	ntroduction	
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Preparation of the research material	2
5	Heterogeneity of material	2
6	Stability of the research material	8
7	Determination of the chemical composition of CRMs	9
8	CRM specimen preparation, packaging, transportation and storage	9
9	CRM certificate	
Annex	A (informative) Spreadsheet instructions for the statistical evaluation of heterogeneity data	11
Annex	Annex B (normative) Suggested Classification of CRMs for EPMA	
	C (informative) Example of a certificate for EPMA CRMs	
Bibliog	raphy <u>ISO 14595 2003</u>	16

https://standards.iteh.ai/catalog/standards/sist/dcdf806c-2488-4faf-ab69-f133969358f1/iso-14595-2003

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 14595 was prepared by Technical Committee ISO/TC 202, *Microbeam analysis*, Subcommittee SC 2, *Electron probe microanalysis*.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 14595:2003</u> https://standards.iteh.ai/catalog/standards/sist/dcdf806c-2488-4faf-ab69-f133969358f1/iso-14595-2003

Introduction

For electron probe microanalysis (EPMA), a comparative quantitative analytical method used throughout the world, certified reference materials (CRMs) play a crucial role in the analytical accuracy.

This International Standard has been developed to facilitate international exchange and compatibility of analysis data in electron probe microanalysis (EPMA).

It gives guidance on evaluating and selecting reference materials (RMs), on evaluating the extent of heterogeneity and stability of RMs and it gives recommendations for the determination of the chemical composition of RMs for production as EPMA certified reference materials.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 14595:2003</u> https://standards.iteh.ai/catalog/standards/sist/dcdf806c-2488-4faf-ab69-f133969358f1/iso-14595-2003

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 14595;2003 https://standards.iteh.ai/catalog/standards/sist/dcdf806c-2488-4faf-ab69-f133969358f1/iso-14595-2003

Microbeam analysis — Electron probe microanalysis — Guidelines for the specification of certified reference materials (CRMs)

1 Scope

This International Standard gives recommendations for single-phase certified reference materials (CRMs) used in electron probe microanalysis (EPMA). It also provides guidance on the use of CRMs for the microanalysis of flat, polished specimens. It does not cover organic or biological materials.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ARD PREVIEW

ISO Guide 31:2000, Reference materials — Contents of certificates and labels

3 Terms and definitions

ISO 14595:2003

https://standards.iteh.ai/catalog/standards/sist/dcdf806c-2488-4faf-ab69-

For the purposes of this International Standard the following terms and definitions apply.

3.1

heterogeneity

measured variation in compositions of elements measured from a group of specimens

NOTE The contributions to heterogeneity include the uncertainties in the measurements from specimen to specimen, from micrometre to micrometre within each specimen, and from the test procedure itself.

3.2

research material

material that appears to have the physical and chemical characteristics required of a CRM, but which is to be examined in detail, including the determination of chemical composition, stability, and micro- and macro-heterogeneity, before certification as a CRM

3.3

stability

(general) resistance of a specimen to chemical and physical change during long-term storage at normal temperature and pressure

3.4

stability

(EPMA) resistance of the material to changes in chemical composition during electron bombardment, i.e. the resistance to change of the intensity of the relevant characteristic X-rays observed during the time the specimen is exposed to the electron beam

3.5

uncertainty

quantitative statement that provides a value for the expected deviation of a measurement from an estimate of the value of the specific measured quantity

4 Preparation of the research material

4.1 Selection of material

The research material used for the preparation of a CRM should exhibit little or no heterogeneity on a micrometer scale, should be free from unwanted inclusions, and should be sufficiently dense (such that voids, if present, can be readily avoided during testing and analysis) and stable under prolonged electron bombardment.

The mounted research material should be of sufficient size to provide several areas suitable for point beam analysis; each area should be approximately 20 μ m or more in diameter. At a minimum, the size should be at least twice the area of X-ray emission.

The quantity of research material should be adequate for the preparation of about 200 certified specimens.

In the case of a synthetic RM, a detailed description of the preparation technique should be provided. In the case of minerals, the geographic origin, the source and the separation process should be specified.

4.2 Preliminary inspection of the material DARD PREVIEW

Initial inspection of a possible research material for la CRM should be made using a binocular optical microscope to evaluate the material for the presence of unwanted inclusions, voids or other phases, and if these are found to be sufficiently abundant to interfere with EPMA of the major phase of interest, i.e. to prevent a clean sampling of the major phase at multiple points with a 1 um electron beam, the material should be rejected.

fl33969358fl/iso-14595-2003

Further inspection for the possible presence of very small inclusions or other phases should be carried out on polished sections in reflected and/or transmitted light. An electron microprobe or a scanning electron microscope with secondary electron and backscatter electron detectors may be needed. Material of known composition with inclusions or other phases should only be considered suitable if the inclusions or other phases can be easily identified and clearly marked on accompanying documentation so that they can be avoided during use.

Material found suitable after preliminary inspection should subsequently be processed for further determination of heterogeneity and stability.

5 Heterogeneity of material

5.1 Sample preparation

The CRM should be stable under the electron beam. It should not charge under required test conditions, though in some cases a conductive coating may be required. It should be in such a physical state that it can be mounted and polished if necessary without rapid surface deterioration on exposure to the atmosphere or vacuum.

The research material should be in the same or similar physical orientation as that proposed for the CRM; e.g., if the CRM is to be cut or cleaved so that flat surfaces are to be used by the analyst for EPMA, then the research material should be mounted in the same manner as that used to obtain heterogeneity data.

5.2 Sample size

The number of specimens selected for testing will depend upon the number, size and composition of the individual specimens in the sample group. For these reasons, detailed rules regarding the sample size are avoided here to allow the analyst flexibility in designing the test procedures.

For a large number of specimens, such as 200 or more seemingly identical specimens already cut or cleaved and ready for distribution, testing of all specimens would be prohibitively time-consuming. A statistically representative number of randomly selected specimens should be selected for testing. If the measured heterogeneity between and/or within specimens is observed to be greater than 1 % relative after taking account of counting statistics for the elements being certified, testing of more specimens may be needed.

Where there are fewer specimens, typically 5 to 20, that can be tested before being cut into smaller specimens for distribution, each specimen may be analysed before being cut, provided that the preparation process does not change the composition in any way.

NOTE Consultation with an experienced statistician is strongly recommended before data acquisition is begun. Detailed rules regarding the sample size are avoided here to allow the analyst flexibility in designing the testing procedures since decisions will depend upon the characteristics of the material and the number of specimens available.

5.3 Test conditions

If the extent of heterogeneity is being determined on the micrometer scale, a 1 μ m (point) beam should be used for the analysis. In some cases, where there may be damage to the specimen by the electron beam, a defocused beam, typically 5 μ m diameter, may be used. Such samples should, therefore, be certified for use only with a defocused beam.

Wavelength-dispersive X-ray spectroscopy (WDX) is the preferred method for heterogeneity determinations because the high X-ray peak rates obtainable with the technique expedite the acquisition of statistically useful data. Energy-dispersive X-ray spectrometry (EDX) can be applied by using integrated X-ray peak intensities, but the data acquisition process is significantly longer. For specimens sensitive to the high current needed for WDX, EDX may be the only choice.

133969358fl/iso-14595-2003

Ideally, the excitation voltage used for the analysis should be about two and a half times the critical excitation energy of the X-ray line of the element being analysed, although this may be difficult if several elements are analysed simultaneously. As a compromise, the selected excitation voltage should be sufficient to excite the X-ray lines of the elements used in the testing with an adequate overvoltage of at least $1.5 \times 1.5 \times$

The selected X-ray lines used to acquire the heterogeneity data should not overlap any X-ray lines of other elements in the specimen. This can be ascertained from wavelength dispersive spectrometer (WDS) scans of the pure elements and of the RM.

The current used will depend upon element concentrations, the stability of the sample to the electron beam and the count rate desired.

The count rate should provide acceptable counting statistics. The count rate should not be so high that the dead time of the WDS proportional counter will increase beyond the normal working range. A normal proportional counter dead time is 1,2 µs or less. For an energy dispersive spectrometer (EDS) the dead time should be approximately 30 %.

NOTE Acceptable count rates will also depend upon tolerable counting uncertainties. From Poisson counting statistics, the standard uncertainty in the counts obtained from an X-ray measurement is equal to the square root of the total number of X-ray counts, \sqrt{N} . A 1 % error can be obtained when the total number of counts is 10 000, but this relative error can be reduced by increasing the number of counts. At 100 000 counts the relative error is reduced to 0,3 %. For an EDS the number of counts refers to the counts in the window of interest or integrated peak counts, not the total spectrum counts. This test uncertainty will be present regardless of the extent of heterogeneity and can be minimized by increasing the integral number of counts through increased current and/or counting time at a given excitation voltage. Both ultimately depend on the sample stability, while the counting time will also be limited by test practicality.

© ISO 2003 — All rights reserved

Knowing the estimated count rate, R, and the desired relative error, σ , the counting time, T, required to achieve that relative error can be calculated from the equation $T = 1/\sigma^2 R$. This equation is derived from the Poisson estimate of the relative error due to counting statistics, $\sqrt{N/N} = \sqrt{RT/RT}$.

5.4 Test procedure

Before heterogeneity testing is begun, the edges of bulk specimens should be analysed and compared to the specimen interior to determine whether there may be a consistent difference in element concentrations in the two locations. Occasionally differences can result from the manufacturing process of materials such as metal alloys or synthetic crystals. If the edges are different from the specimen interior, they should be removed before samples are taken for bulk quantitative analysis and before specimens are mounted and polished for heterogeneity studies. In some specimens, differences may also be due to mounting and polishing procedures; if this occurs and cannot be remedied, the certificate should include instructions to the analyst to avoid using the material within a specified minimum distance from the edge.

Specimens that are being compared should be mounted together in the same sample mount or block, if possible. Carbon coating, if necessary, should be applied to all specimens simultaneously.

Tests should be designed to efficiently acquire the data needed to determine the extent of the within- and between-specimen heterogeneity, to determine the experimental uncertainty and to look for gradual increasing or decreasing concentration changes on the micrometer scale using 50 µm to 100 µm line scans. Examples of tests are given below, but they may be modified depending upon the individual material or group of specimens being analysed. The beam current should be monitored to provide a value corresponding to each data reading enabling subsequent current drift corrections to be carried out, if necessary.

NOTE It is advisable to collect data in an ASCII format that can be easily put into a spreadsheet for subsequent processing.

(standards.iteh.ai)

For each specimen being tested, X-ray counts for several, randomly selected points, typically 7 to 10, or more depending upon the size of the specimen, should be acquired. These data should be acquired at least in duplicate; i.e., integral X-ray counts should be acquired and recorded at least twice on each point without moving the specimen or electron beam between acquisitions. Specimens should be analysed in a random order and preferably, each specimen should be analysed twice, each time in a different order. It may be worthwhile for different operators to take data for duplicate analyses, using a different random sampling plan for each. Refer to ISO Guide 35 [6] for sampling procedures and methods of evaluating results. The data from this type of test is used to calculate the within- and between-specimen uncertainties as well as the test uncertainty after beam current drift corrections are made. When background data are obtained for each element the uncertainties can be expressed as a mass fraction. The equations used for these calculations are given in 5.5.

To test for the presence of concentration trends within each specimen, which may not be detected by random sampling, line profiles of the points less than 5 μ m apart and 50 μ m to 100 μ m in length should be prepared. Two-line profiles normal to one another are recommended. For specimens of 1 cm to 2 cm, a set of two-line profiles should be prepared from at least two different locations on the specimen. After current corrections, data should be plotted (distance against X-ray counts) for each element to expose variations in concentrations that may be present. Such trends may not preclude the certification process if they are within the 99 % confidence limits or \pm 3 times the Poisson counting error (square root of the integral number of X-ray counts).

5.5 Statistical evaluation of data

The uncertainties in the element concentrations resulting from heterogeneity within specimens and between specimens and in the test acquisition, can be obtained from the procedures described above using the following calculations.

NOTE There are several examples [1-4] of the use of test procedures and calculations similar to those described here; the statistical notation has been simplified for this document to facilitate its usage. The statistical approach used here is called a nested design that is described in detail in other references [5, 6, 8]. The procedures described have been developed in collaboration between the National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA

and the National Physical Laboratory (NPL), Teddington, Middlesex, UK and have been used successfully. Other validated test and statistical procedures may be used, provided that they are described in full in the CRM certificate.

Let w_0 be the true mass fraction of a particular element in the RM. Any single micrometer scale measurement, w, expressed in weight percent taken from a randomly selected point of a randomly selected specimen will deviate from w_0 because of the variation between specimens (macroheterogeneity), variation within specimens (microheterogeneity), and the measurement error. The deviation, $w - w_0$, may be viewed as a sum of random effects:

$$w = w_0 + S + P + E \tag{1}$$

where

 w_0 + S is the true mass fraction in the selected specimen;

 w_0 + S+P is the true micrometer scale mass fraction concentration at the selected point of the selected specimen;

E is the measurement error.

The components of variance, $\sigma_{S_w}^2$, $\sigma_{P_w}^2$, $\sigma_{E_w}^2$ are the variances of the random effects S, P and E, respectively. The variance, σ_w^2 , of the measurement w is given by the equation

$$\sigma_w^2 = \sigma_{S_w}^2 + \sigma_{P_w}^2 + \sigma_{Ew}^2 +$$

If $n_{\rm E}$ independent measurements are made at each of $n_{\rm P}$ randomly selected points of each of $n_{\rm S}$ randomly selected specimens, and if w_{ijk} denotes the kth replicated measurement at point j of specimen i, then the grand mean given by the equation $\frac{180 \ 145952003}{145952003}$

https://standards.iteh.ai/catalog/standards/sist/dcdf806c-2488-4faf-ab69-

$$\overline{w} = \frac{1}{(n_{\text{P}} \ n_{\text{S}} \ n_{\text{E}})} \sum_{i=1}^{n_{\text{S}}} \sum_{j=1}^{n_{\text{P}}} \sum_{k=1}^{n_{\text{E}}} w_{ijk}$$
 f133969358f1/iso-14595-2003 (3)

has a variant

$$\sigma_{w}^{2} = \frac{\sigma_{S_{w}}^{2}}{n_{S}} + \frac{\sigma_{P_{w}}^{2}}{n_{SNP}} + \frac{\sigma_{E_{w}}^{2}}{n_{SNPNE}}$$

$$(4)$$

assuming the design is balanced. Thus, the uncertainty in the mean measurement \overline{w} may be determined from estimates of $\sigma_{S_w}^2$, $\sigma_{P_w}^2$, $\sigma_{E_w}^2$. An approximate 95 % or 99 % confidence interval for the mean micrometer scale concentration is respectively

$$\bar{w} \pm 2 \left[\frac{\sigma_{S_w}^2}{n_S} + \frac{\sigma_{P_w}^2}{n_S n_P} + \frac{\sigma_{E_w}^2}{n_S n_P n_E} \right]^{1/2}$$
 (5A)

or

$$\overline{w} \pm 3 \left[\frac{\sigma_{S_w}^2}{n_S} + \frac{\sigma_{P_w}^2}{n_S n_P} + \frac{\sigma_{E_w}^2}{n_S n_P n_E} \right]^{1/2}$$
(5B)