TECHNICAL REPORT

ISO/IEC TR 14252

ANSI/IEEE Std 1003.0

First edition 1996-12-15

Information technology — Guide to the POSIX® Open System Environment (OSE)

Technologies de l'information — Guide pour l'environnement de système **iTeh STANDARD PREVIEW**

(standards.iteh.ai)

ISO/IEC TR 14252:1996 https://standards.iteh.ai/catalog/standards/sist/bffeef8f-d4a7-41a5-9715-858c2c9ce5a1/iso-iec-tr-14252-1996

Reference number ISO/IEC TR 14252:1996(E) ANSI/IEEE Std 1003.0-1995 edition

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/IEC TR 14252:1996 https://standards.iteh.ai/catalog/standards/sist/bffeef8f-d4a7-41a5-9715-858c2c9ce5a1/iso-iec-tr-14252-1996

ISBN 1-55937-692-9

Copyright © 1996 by

The Institute of Electrical and Electronics Engineers, Inc. 345 East 47th Street, New York, NY 10017, USA

> No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Information technology— Guide to the POSIX® Open System Environment (OSE)

Sponsor

Portable Applications Standards Committee of the IEEE Computer Society

> Approved May 2, 1995 IEEE Standards Board

iTeh STApproved December 19, 1995 American National Standards Institute

ISO/IEC TR 14252:1996

Abstract: This guide presents an overview of open system concepts and their applications. Information is provided to persons evaluating systems based on the existence of, and interrelationships among, application software standards, with the objective of enabling application portability and system interoperability. A framework is presented that identifies key information system interfaces involved in application portability and system interoperability and describes the services offered across these interfaces. Standards or standards activities associated with the services are identified where they exist or are in progress. Gaps are identified where POSIX® Open System Environment services are not currently being addressed by formal standards. Finally, the concept of a profile is discussed with examples from several application domains.

Keywords: application portability, application interoperability, open system environments, profiles, POSIX®

Adopted as an International Standard by the International Organization for Standardization and by the International Electrotechnical Commission

Published by The Institute of Electrical and Electronics Engineers, Inc.

ISO/IEC TR 14252:1996(E) ANSI/IEEE Std 1003.0-1995

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

The main task of technical committees is to prepare International Standards, but in exceptional circumstances a technical committee may propose the publication of a Technical Report of one of the following types: TR 14252:1996

https://standards.iteh.ai/catalog/standards/sist/bffeef8f-d4a7-41a5-9715-

- type 1, when the required support cannot be obtained for the publication of an International Standard, despite repeated efforts;
- type 2, when the subject is still under technical development or where for any other reason there is the future but not immediate possibility of an agreement on an International Standard;
- type 3, when a technical committee has collected data of a different kind from that which is normally published as an International Standard ("state of the art", for example).

Technical Reports of types 1 and 2 are subject to review within three years of publication, to decide whether they can be transformed into International Standards. Technical Reports of type 3 do not necessarily have to be reviewed until the data they provide are considered to be no longer valid or useful.

ISO/IEC TR 14252, which is a Technical Report of type 3, was prepared by Technical Committee ISO/IEC JTC 1, Information technology.

International Organization for Standardization/International Electrotechnical Commission Case postale 56 • CH-1211 Genève 20 • Switzerland **IEEE Standards** documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Board. Members of the committees serve voluntarily and without compensation. They are not necessarily members of the Institute. The standards developed within IEEE represent a consensus of the broad expertise on the subject within the Institute as well as those activities outside of IEEE that have expressed an interest in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of all concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration. **21**

Comments on standards and requests for interpretations should be addressed to:

https://standards.iteh.sicatalog/streEed.sis/hffed8.6443_41a5-9715-858445 Hoes Lanec-tr-14252-1996 P.O. Box 1331 Piscataway, NJ 08855-1331 USA

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying all patents for which a license may be required by an IEEE standard or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; (508) 750-8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.

Contents

							PAGE
Introdu	$ction \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	•	• •	•	•	•	v
Section	1: General			•			1
1.1	Scope						1
1.1 1.2	Normative References						1
1.2 1.3	Conformance	•••		•	•	•	10
1.3 1.4	Test Methods	• •		•	•	•	11
1.4		• •	•	•	•	•	
Section	2: Terminology \ldots \ldots \ldots \ldots			•	•	•	13
2.1	$Conventions \dots \dots \dots \dots \dots \dots \dots \dots \dots $			•	•	•	13
2.2	Definitions						14
2.2	2.2.1 Terminology						14
	2.2.2 General Terms						15
	2.2.3 Abbreviations			•	•	•	20
		• •		•	•	•	20
Section	3: POSIX Open System Environment (OSE)			•	•	•	23
3.1	POSIX Open System Environment (OSE) REVI	E.	W.				24
3.2	POSIX OSE Reference Medeldords it ch. ai).						27
3.3	POSIX OSE Reference Modeldards.iteh.ai) POSIX OSE Services						36
3.4				•	•	•	37
3.5					•	•	39
3.0	POSIX Profiles https://standards.iteh.ai/catalog/standards/sist/bffeef8f-d4a7-4 PIIs	la5-	971	5- •	•	•	40
5.0	PIIS • • • • 858c2c9ce5a1/iso-iec-tr-14252-1996 •	• •	•	•	•	•	40
Section	4: POSIX OSE Services			•	•	•	43
4.1	Language Services			•	•	•	45
4.2	Core System Services						54
4.3	Communication Services						67
4.4	Database Services						83
4.5	Data Interchange Services						94
4.6	Transaction Processing Services						101
4.7	User Command Interface Services					•	110
4.7	Character-Based User Interface Services					•	118
4.9		•	•	•	•	•	124
		•	• •	•	•	•	140
	Graphics Services		•	• •	•	•	154
4.11	Application Software Development Support Services		• .	• •	•	•	104
Section	5: POSIX OSE Cross-Category Services						159
5.1	Internationalization Services						160
5.1 5.2	System Security Services	•	•	••	•	•	175
5.2 5.3	Systems Management Services	•	•	• •	•	•	182
0.5	Systems management services	•	•	• •	•	•	102
Section	6: Profiles			•			195
	Scope	•	•	•		•	195
0.1		-			•		

6.2	Concepts Related to Profiles .	•	•	•	•	•		•			•	•	•	•	196
6.3	Guidance to Profile Developers	•	•	•	•	•	•	•	•	•	•	•	•	•	197
6.4	Types of Profiles	•	•	•	•	•	•	•	•	•	•	•	•	•	202
Section	7: POSIX SP Profiling Efforts	•	•	•	•	•	•	•	•	•	•	•	•	•	203
7.1	Introduction	•	•	•	•	•	•	•	•	•	•	•	•	•	203
7.2	Multiprocessing Systems Platfo	rm	Pr	ofil	les		•	•	•	•	•	•	•	•	204
7.3	POSIX Interactive Systems AEP														206
7.4	Supercomputing AEP	•	•	•	•	•	•	•	•	•	•	•	•	•	206
7.5	Realtime AEPs	•	•	•	•	•	•	•	٠	٠	•	•	•	•	208
Annex A	A (informative) Bibliography	•	•	•	•	•	•	•	•	•	•	•	•	•	211
Annex I	3 (informative) Standards Orga	niz	ati	ons	s ai	nd	Co	nta	act	Inf	fori	na	tioi	ı	217
B.1	Introduction	•	•	•	•	•	•		•	•	•	•	•	•	217
B.2	The Formal Standards Groups														218
B.3	Related Organizations														237
Alphabe	etic Topical Index	•	•	•	•	•	•	•	•	•	•	•	•	•	249

FIGURES

Figure 3-1 POSIX OSE Reference Model
Figure 3-2 – POSIX OSE Reference Model – Entities
Figure 3-3 – POSIX OSE Reference Model — Interfaces
Figure 3-4 – POSIX OSE Reference Model — Distributed Systems 35
Figure 3.5s.//stan Distributed Application Platform Implementation 36
Figure 3-6 - Service Components and Interfaces
Figure 4-1 – POSIX OSE Language Services Reference Model 47
Figure 4-2 – POSIX OSE Core System Services Reference Model 55
Figure 4-3 – POSIX OSE Communication Services Reference Model 68
Figure 4-4 – POSIX OSE Communication Standards 80
Figure 4-5 – Traditional Database Model 84
Figure 4-6 – POSIX OSE Database Services Reference Model 84
Figure 4-7 – POSIX OSE Data Interchange Services Reference Model . 95
Figure 4-8 – Transaction Processing Model 103
Figure 4-9 – POSIX OSE Transaction Processing Services Reference
Model
Figure 4-10 – POSIX OSE User Command Interface Services Reference
Model
Figure 4-11 – POSIX OSE Character-Based User Interface Services Reference
Model
Figure 4-12 – POSIX OSE Windowing System Services Reference Model . 126
Figure 4-13 – Computer Graphics Reference Model Level Structure 142
Figure 4-14 – POSIX OSE Graphics Services Reference Model 143
Figure 4-15 – POSIX OSE Application Software Development Services Reference
Model

Figure 5-1 –	POSIX OSE Reference Model for Systems Management	183
Figure B-1 –	Selected Major Standards and Standards-Influencing Bodies	219
Figure B-2 –	IEEE Standards Diagram	233

TABLES

Table 2-1	—	Typographical Conventions	13
Table 4-1	_	Mapping of Service Categories to Section 4 Clauses	43
Table 4-2	_	Language Standards	51
Table 4-3		Core System Services Standards	62
Table 4-4		Systems Services Standard Language Bindings	63
Table 4-5		Functionality of ISO/IEC 9945-1: 1990	64
Table 4-6	_	Communication Standards — APIs	74
Table 4-7		Communication Standards — EEIs	75
Table 4-8		Communication Standards — Services at the EEI	76
Table 4-9	-	Communication Standard Language Bindings	76
Table 4-10	_	Database Standards	90
Table 4-11		Database Standard Language Bindings	91
Table 4-12	_	Data Interchange Standards	98
Table 4-13		Transaction Processing Standards	108
Table 4-14	-	Transaction Processing Standard Language Bindings	109
Table 4-15	_	User Command Interface Processing Standards	116
Table 4-16	_	User Command Interface Processing Language Bindings .	116
Table 4-17	_	Character-Based User Interface Standards	122
Table 4-18	_	Character-Based User Interface Standard Language	
Binding	5	https://standards.iteh.ai/catalog/standards/sist/bffeef8f-d4a7-41a5-9715-	123
Table 4-19	-	Windowing Standards ^{5a1/iso-jec-tr-14252-1996}	136
Table 4-20	_	Windowing Graphical Standard Language Bindings	137
Table 4-21	_	POSIX OSE Graphics Services Reference Model Standards	148
Table 4-22	_	Graphics Standard Language Bindings	148
Table 4-23		Application Software Development Support Standards $~$.	157
Table 4-24	—	Application Software Development Support Services	
Binding	5		157
Table 5-1	_	Internationalization Standards	170
Table 5-2	_	System Security Standards	180
Table 5-3	_	System Security Standard Language Bindings	180
Table 5-4		System Management Standards	192
Table 5-5	-	Systems Management Standard Language Bindings	192
Table 7-1	_	POSIX SPs in Progress	204

Introduction

(This introduction is not a normative part of IEEE Std 1003.0-1995 or of ISO/IEC TR 14252:1996.)

Purpose 1

This guide describes the POSIX Open System Environment (POSIX OSE). It is 2 intended to be used by anyone interested in using standards to construct an infor-3 mation processing system, including consumers, systems integrators, application 4 developers, systems providers, and procurement agencies. 5

The scope of this guide is much broader than a single standard. This guide 6 7 identifies standards from many different areas produced by many different organizations. The POSIX OSE is intended to be broad enough to cover the entire scope 8 of general-purpose information processing systems. While the intent of this guide 9 is to identify completely the user services for a general-purpose information pro-10 cessing system, it is acknowledged that this will take some time, and this version 11 of the guide may be incomplete in areas that are still evolving. 12

It is important to note that this guide is not a base standard itself; it merely 13identifies standards that might be used when constructing a complete information 14 processing system STANDARD PREVIEW 15

- It is not appropriate to claim conformance to this guide because it contains no 16mandatory requirements. This guide is intended to be used only as a source of 17reference material. 18

Although this guide is a product of the IEEE POSIX standardization efforts, its 19 scope is much broader than those efforts. JEEE POSIX is currently developing 20base standards and standardized profiles focused primarily on application pro- $\mathbf{21}$ 22 gramming interfaces. At the end of the introduction is a cross-reference of the POSIX standardization efforts and where they fit into the POSIX OSE. For a more 23 24 detailed discussion of POSIX profiling projects, see Section 7.

- The process of selecting standards for a particular application domain is called 25profiling. Recommendations for the production of different types of profiles are 26 included in this guide. 27
- It may never be necessary to implement an information processing system that 28 provides an implementation of every standard in the POSIX OSE. 29

In addition to listing and categorizing existing standards efforts, this guide 30 identifies important services that standards have not yet addressed. In areas 31where these services are not addressed, emerging standards efforts and existing 32 public specifications are described. These emerging standards and public 33 specifications are not part of the POSIX OSE. They are included in this guide to 34 identify some of the existing work that has been done in areas that are gaps in 35 the POSIX OSE. This guide does not promote the use of these specifications that 36 are outside the POSIX OSE. They are included for information purposes only. 37

User needs and standards to meet those services are continuously expanding. As 38 such, this guide will need regular revision to incorporate new user services and 39

the new standards that evolve to meet those user needs. 40

The POSIX OSE Reference Model 41

To describe the POSIX OSE, this guide develops a reference model used to classify 42 information processing standards. The reference model categorizes standards at 43 two types of interfaces: 44

Application Program Interface (API) Standards 45

These standards govern how application software interacts with the 46 computer system. These standards affect application portability. 47

External Environment Interface (EEI) Standards

- These standards affect how an information processing system interacts 49 with its external environment. These standards affect system interoper-50 ability, user interface usability, and data portability. 51
- These standards allow users to procure portions of their information processing 52systems independently from multiple vendors according to the needs of each user. 53
- The services provided at the interfaces are classified into four major categories: 54

— System services 55

- Information services 56
- 57
- Human/Computer interaction services 58
- Within these categories, service component areas are identified. 59
- Using the reference model, a general set of services for each component area is 60 developed. For each of the services, existing or emerging standards are identified 61 that address each of the services. If a service is not completely addressed by an 62
- existing or emerging standard, this gap in the standards is noted. 63

Goals 64

48

- The POSIX OSE described in this guide should provide services to satisfy the fol-65 lowing objectives, summarized from 3.1. 66
- Application Portability at the Source Code Level 67 To allow for movement of source code and data to a variety of applica-68 tion platforms 69
- System Interoperability 70
- To allow application software and application platform interoperability 71

User Portability 72

- To allow people to use a wide range of application platforms without 73 retraining 74
- Accommodation of Standards 75 To provide users and vendors with information about key interface 76 specifications related to OSE objectives 77

78	Accommodation of New Information System Technology
79	To allow for migration to new technologies and a variety of marketplace
80	solutions
81	Application Platform Scalability
82	To allow portability and software reuse across application platform
83	types
84	<i>Distributed System Scalability</i>
85	To assure that related standards do not inappropriately limit the
86	growth of distributed systems
87	<i>Implementation Transparency</i>
88	To allow the widest latitude in providing consistent and standard inter-
89	faces to the application, regardless of the underlying implementation
90	technology
91	Functional Requirements of the User
92	To allow clear statement of user needs and provide context for identify-
93	ing related standards
94	Benefits
95	The following items are some of the benefits derived from the use of POSIX OSE.
96	Integration of Components From Multiple Vendors
97	As the standards for system integration and system interoperability are
98	produced and implemented, users will have the choice of mixing
99	software and equipment from multiple vendors. This will allow users to
100	tailor their information processing system to their particular needs by
101	selecting hardware and software based on the needs of the application
102	trather than the ability of the hardware and software to interoperate
103	with the existing equipment. ¹⁴²⁵²⁻¹⁹⁹⁶
103	Efficient Development and Implementation
105	Normally, systems users and providers have development and imple-
106	mentation activities that utilize personnel possessing skills in a specific
107	computer environment. As a result of this specialization, a change in
108	the target computer environment for a developer requires significant
109	retraining expense. As standards for application portability, system
110	interoperability, and system integration are developed, computer per-
111	sonnel will begin to develop skills in working with these standards.
112	This will allow a company to hire personnel with existing skills that can
113	be put to use in their operation. In addition, within a company,
114	resources can be redeployed between development efforts with a
115	minimum of retraining.
116	Efficient Porting of Applications
117	The difficulty of moving an application from one hardware or software
118	environment to another is widely known. The porting of an application
119	that uses standards-based interfaces to another system that provides
120	the same standards-based interfaces is considerably simpler than ports
121	involving completely different systems. The amount of system tailoring

(i.e., changes to either the operating or application system required to make them work well together) is greatly reduced.

124 **Related Standards Activities**

In addition to this guide, the Portable Applications Standards Committee (PASC)
 has authorized other standards activities that are related to the content of this
 guide.

The following table summarizes the current PASC standardization efforts¹⁾ and how they relate to sections of this guide:

130	Project	Standard/Profile	Section
131	P1003.1, .1a	System Interfaces	4.2
132	P1003.1b, .1d	Realtime (formerly P1003.4)	4.2
133	P1003.1c	Threads (formerly P1003.4)	4.2
134	P1003.1e	Security API (formerly P1003.6.1)	5.2
135	P1003.1f	Transparent File Access (formerly P1003.8)	4.3
136	P1003.1g	Protocol-Independent Network API (formerly P1003.12)	4.3
137	P1003.2, .2b	Shell and Utilities	4.7
138	P1003.2c	Security Utilities (formerly P1003.6.2)	5.2
139	P1003.2d	Batch Queueing Extensions	4.7
140	P1003.5	Ada Bindings	4.1
141	P1003.5b	Ada Realtime Binding (formerly P1003.20)	4.1
142	P1003.9	Fortran Bindings dards itch ai)	4.1
143	P1003.10	Fortran Bindings dards.iteh.ai) Supercomputing Profile	7.2
144	P1003.13	Realtime Profile	7.2
145	P1003.14	Multiprocessing FO/FE TR 14252:1996	7.2
146	P1003.18	POSIX Platform Profile	7.2
147	P1003.21	Realtime Distributed Systems Communications	4.3
148	P1003.22	Guide to POSIX OSE Security Framework	5.2
149	P1201.1	Uniform API for Graphical User Interfaces	4.9
150	P1201.2	User Interface Drivability	4.9
151	P1224	OSI API — Abstract Data Manipulation	4.3
152	P1224.1	OSI API — X.400 Electronic Mail/Messaging	4.3
153	P1224.2	OSI API — X.500 Directory Services (formerly P1003.17)	
154	P1238.0	OSI API Common Support Functions	4.3
155	P1238.1	OSI API FTAM Test Methods and C Binding	4.3
156	P1327	OSI API Abstract Data Manipulation — C Binding	4.3
157	P1327.1	OSI API X.400 — C Binding	4.3
158	P1327.2	OSI API X.500 — C Binding	4.3
159	P1387.n	System Administration (formerly P1003.7. <i>n</i>)	5.3

¹⁶⁰ 161 162

¹⁾ A Standards Status Report that lists all current IEEE Computer Society standards projects is available from the IEEE Computer Society, 1730 Massachusetts Avenue NW, Washington, DC 20036-1903, USA; Telephone: +1 202 371-0101; FAX: +1 202 728-9614.

163	Project	Standards/Profile	Section
164	P2003.n	Test Methods (formerly P1003.3. <i>n</i>)	

¹⁶⁵ Most these efforts are in the areas of API standards and standardized profiles.

Extensions are approved as "amendments" or "revisions" to this document, following IEEE
 and ISO/IEC procedures.

Approved amendments are published separately until the full document is reprinted and such amendments are incorporated in their proper positions.

If you have an interest in participating in the PASC working groups addressing these issues, please send your name, address, and phone number to the Secretary, IEEE Standards Board, Institute of Electrical and Electronics Engineers, Inc., P.O. Box 1331, 445 Hoes Lane, Piscataway, NJ 08855-1331, USA, and ask to have this forwarded to the chairperson of the appropriate PASC working group. If you have an interest in participating in this work at the international level, contact your ISO/IEC national body.

IEEE Std 1003.0-1995 was prepared by the IEEE P1003.0 working group, sponsored
by the Portable Applications Standards Committee of the IEEE Computer Society. At
the time this standard was approved, the membership of the P1003.0 group was as
follows:

180	Portable Applications Standards Committee							
181	iTeh S	TANChair	RD F	Lowell Johnson				
182		Vice-Cha	irs:	Jay Ashford				
183		(standard	IS.Ite	Andrew Josey				
184				Barry Needham				
185		ISO/IEC TP	1/252.10	Charles Severance				
186	lettre av//atore doud	<u>ISO/ILC_IK</u>	<u>14232.17</u>	Jon Spencer				
187	https://standards	Secretary	ards/sist/b	Charles Severance				
188		858c2c9ceTreasurer	ec-tr-142	Peter Smith				
189		P1003.0) Working	g Group Officials				
190		Chair:		Allen Hankinson (1987-1993)			
191				Kevin Lewis (1993-1995)				
192		Vice-Chairs:		Kevin Lewis (1987-1993)				
193				Fritz Schulz (1993-1995)				
194		Technical Editor:		Fritz Schulz				
195		Production Editors:	:	Anthony Cincotta (ISO/IEC	Standard)			
196				Hal Jespersen (IEEE Standar	d)			
197		Secretary:		Charles Severance				
198			Workin	g Group				
199	Michael Aaby		Bob Gam	brel	Per Pedersen			
200	Michelle Aden		Daniel G	reen	Arnie Powell			
201	Bill Allcorn		Quin Hal		Dave Pruett			
202	Gary Andrews		Dale Hai	ris	Brian Purdy			
203	Bengt Asker		John Hill		Lynwood Randolph			
204	Jeanne Baccash		Richard		Wendy Rauch			
205	Jayne Baker		Michael		Brad Reed			
206	Rick Barbour		Terry Hu	1 2	Darryl Roberts			
207	Ralph Barker		Jeff Hust		Mark Ruddock			
208	Tony Barrese		E. Lee H		Nobuo Saito			
209	Jon Becker		Jim Isaal	κ.	Greg Sawyer			

210	Erwin R. Bender	Clariest Iselt	Norman Scherer
211	Rich Bergman	Petr Janecek	Carl Schmiedekamp
212	Andy Bihain	Michael Jende	Andy Schoka
213	Lorenzo Bonanni	James Johnson	Richard Scott
214	Kevin Brady	Lorraine Kevra	Glen Seeds
215	Steve Brooks	Walter C. Keyser	Ron Sellars
216	Steve Carpenter	Michael Kjolsrud	Lewis Shannon
217	Tim Carter	Bob Knighten	Karen Sheaffer
218	David Chinn	Bob Kruger	Harry Singh
219	J. J. Cinecoe	Mike Lambert	Pete Smith
220	Michel Colin	Doris Lebovits	Dukjoo Son
221	Bud Conrad	Kevin Leininger	Vinnie Squitieri
222	Art Corey	W. Edward Ludt	Keith Stobie
223	Jean-Michel Cornu	Heinz Lycklama	Jong Sung Sunwoo
224	Joe Cote	Sheila Mallela	Sandra Swearingen
225	Bernard Cox	Roger Martin	Marti Szczur
226	Elizabeth Crouse	Sunil Mehta	Ravi Tavakley
227	Francis Deckelman	Pete Meier	Eva Uristensson
228	Shane Deichman	Gary Miller	Martial Van Neste
229	Simion Diky	Manuel Carbajo Monje	Bob Voigt
230	Dave Dodge	Kevin Murphy	Andrew Walker
231	Dominic Dunlop	Yasushi Nakahara	Gentry Watson
232	Mat Einseln	Shigetatsu Nakao	Alan Weaver
233	Dave Febrache	Barry Needham	James White
234	Donna Fisher	Suy Nguyen	John Wilber
235	Don Folland	Mary Lynne Nielsen	John Williams
236	David Folsom	Patricia Oberndorf	Arnold Winkler
237	Kester Fong	ST Jim Oblinger RD PRFV	Wayne Yaddow
238	Rick Forberg	Peter Owens	Charles Young
239	Thomas Ford	(ctEd Palmer of the ai)	George Zerdian
240		F. G. Patterson, Jr.	

ISO/IEC TR 14252:1996 https://standards.iteh.ai/catalog/standards/sist/bffeef8f-d4a7-41a5-9715-858c2c9ce5a1/iso-iec-tr-14252-1996

242	Nick Stoughton	EurOpen Institutional Represent	tative
243	Robert Boucher	Uniforum Institutional Represer	
244	Norman Aaronson	Joe Gwinn	Wendy Rauch
245	Michelle Aden	Allen L. Hankinson	Robert Sarr
246	Lynda Allen	Barry Hedquist	Andrew M. Schoka
247	Bengt Asker	Hans H. Heilborn	Fritz Schulz
248	Ralph Barker	John L. Hill	Richard L. Scott
249	Richard M. Bergman	James C.M. Ho	Peter Smith
250	Andy R. Bihain	Andrew R. Huber	Jeff Stevenson
251	Robert Bismuth	Richard Hughes-Rowlands	Sandra Swearingen
252	Keith Brophy	Jim Isaak	James G. Tanner
253	Dawn Burnett	Petr Janecek	Ravi Tavakley
254	George S. Carson	Hal Jespersen	Donn S. Terry
255	Stephan M. Chan	Derek Kaufman	Andrew T. Twigger
256	Kilnam Chon	Judy Kerner	Mark-René Uchida
257	William Corwin	Lorraine C. Kevra	Martial Van Neste
258	Fred D. Crowner	Martin J. Kirk	Andrew Walker
259	Dave Decot	Greger Leijonhufvud	Stephen R. Walli
260	Shane Deichman	Kevin Lewis	Paul Wanish
261	Stephen L. Diamond	Lee W. Lucas	Bruce Weiner
262	Ron Elliott	Roger Martin	Andrew E. Wheeler
263	Richard W. Elwood	Roland McGrath	Alex White
264	Philip H. Enslow	Pete Meier	John R. Williams
265	Donna K. Fisher	Gary W. Miller	Peter Wishart
266	Donald Folland	John S. Morris F. / F. V	Charles R. Young
267	Bob Gambrel	Alok C. Nigam	Oren Yuen
268	Michel Gien	Patricia Oberndorf	John J. Zenor
269	Michael Gonzalez	A. W. Powell	George R. Zerdian
270		Scott E. Preece	<u> </u>
	ISO/IEC	<u>TR 14252:1996</u>	
	1		

241 The following persons were members of the balloting group:

https://standards.iteh.ai/catalog/standards/sist/bffeef8f-d4a7-41a5-9715-858c2c9ce5a1/iso-iec-tr-14252-1996