INTERNATIONAL STANDARD

ISO 14324

First edition 2003-07-01

Resistance spot welding — Destructive tests of welds — Method for the fatigue testing of spot welded joints

Soudage par résistance — Essais destructifs des soudures — Méthode pour les essais de fatigue sur assemblages soudés par points

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 14324:2003 https://standards.iteh.ai/catalog/standards/sist/eae489f1-ac32-4142-b504-d87c3bba1aad/iso-14324-2003

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 14324:2003 https://standards.iteh.ai/catalog/standards/sist/eae489f1-ac32-4142-b504-d87c3bba1aad/iso-14324-2003

© ISO 2003

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Cont	Contents Page				
Forew	ord	iv			
1	Scope	. 1			
2	Normative references	. 1			
3	Terms and definitions	. 1			
4 4.1 4.2 4.3	Test specimens	. 3 . 5			
5	Testing machine	5			
6 6.1 6.2	Test methods Test jig Clamping of test specimens	. 5 . 5			
6.3 6.4	Test procedure				
6.5	Termination of test Determination of L-N data ANDARD PREVIEW Analysis and presentation of test results	9			
7	Analysis and presentation of test results	10			
8	Test report (standards.iteh.ai)	10			

ISO 14324:2003

https://standards.iteh.ai/catalog/standards/sist/eae489f1-ac32-4142-b504d87c3bba1aad/iso-14324-2003

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 14324 was prepared in collaboration with the International Institute of Welding which has been approved by the ISO Council as an international standardizing body in the field of welding.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 14324:2003 https://standards.iteh.ai/catalog/standards/sist/eae489f1-ac32-4142-b504-d87c3bba1aad/iso-14324-2003

Resistance spot welding — Destructive tests of welds — Method for the fatigue testing of spot welded joints

1 Scope

This International Standard specifies test specimens and procedures for fatigue testing spot welds, at ambient conditions, under repeated tensile loading to produce either shear or cross-tension loading of the spot weld, in steel of sheet thicknesses of 0,5 mm to 6 mm. The test results are not, in general, directly applicable to the fatigue behaviour of a spot-welded component or structure. This procedure can be used for other materials provided proper test conditions (e.g., heating) have been determined.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. A R D P R E V E V

ISO 669, Resistance welding — Resistance welding equipment — Mechanical and electrical requirements

ISO 14271, Vickers hardness testing of resistance spot, projection and seam welds (low load and microhardness)

ISO 14271, Vickers hardness testing of resistance spot, projection and seam welds (low load and microhardness)

https://standards.iteh.ai/catalog/standards/sist/eae489f1-ac32-4142-b504-

ISO 14272, Specimen dimensions and procedure for 4cross tension testing resistance spot and embossed projection welds

ISO 14273, Specimen dimensions and procedure for shear testing resistance spot, seam and embossed projection welds

ISO 14329, Resistance welding — Destructive tests of welds — Failure types and geometric measurements for resistance spot, seam and projection welds

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

cross-tension fatigue test

fatigue test that entails the application of a repeated tensile load to the cross-tension fatigue test specimen mounted between the jaws of the fatigue-testing machine

3.2

endurance limit

maximum load range at which the test specimen can endure a designated number of load cycles without failing

3.3

fatigue life

Ν

number of cycles that can be applied at a specified load before failure occurs

3.4

fatigue limit¹⁾

maximum load range at which the test specimen can endure an infinite number of load cycles

3.5

L-N curve¹⁾

curve drawn by plotting the load range as ordinate and the fatigue life (or fatigue endurance if the test is terminated before failure) as abscissa, also called the load range-number of load cycles curve

NOTE It is normal practice to use logarithmic axes.

3.6

load amplitude

 L_{a}

half of the load range

$$L_a = 0.5\Delta L$$

3.7

load ratio

minimum load divided by the maximum load

$$R = L_{\min}/L_{\max}$$

3.8

load range

iTeh STANDARD PREVIEW (standards.iteh.ai)

difference between the maximum and minimum loads

$$\Delta L = L_{\text{max}} - L_{\text{min}}$$

https://standards.iteh.ai/catalog/standards/sist/eae489f1-ac32-4142-b504d87c3bba1aad/iso-14324-2003

3.9

maximum load

 L_{max}

highest algebraic value of the repeated load

3.10

mean load

average of the maximum and minimum loads

$$L_{\rm m}$$
 = 0,5($L_{\rm max}$ + $L_{\rm min}$)

3.11

minimum load

lowest algebraic value of the repeated load

3.12

repeated load

load varying simply and periodically between constant maximum and minimum values

¹⁾ Since test results are usually scattered, it may be necessary to establish the L-N curve and the fatigue limit using statistics.

3.13

shear fatigue test

fatigue test that entails the application of a repeated tensile load (hereafter called the load) to the shear fatigue test specimen mounted between clamping jaws of the fatigue-testing machine

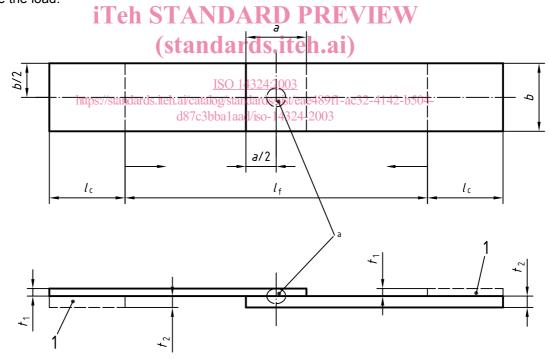
3.14

test sheets

metal sheets for spot welding

3.15

test specimen


spot welded test sheets

4 Test specimens

4.1 Shape and dimensions

4.1.1 Shear fatigue test

Specimen width b, overlap a, and free length between clamps $l_{\rm f}$ of the test plates and test specimen used in the shear fatigue test shall be as shown in Figure 1 and Table 1. For joints between plates of different thickness, the dimensions given refer to the thinner plate. Shim plates of appropriate thickness should be used to centre the load.

Key

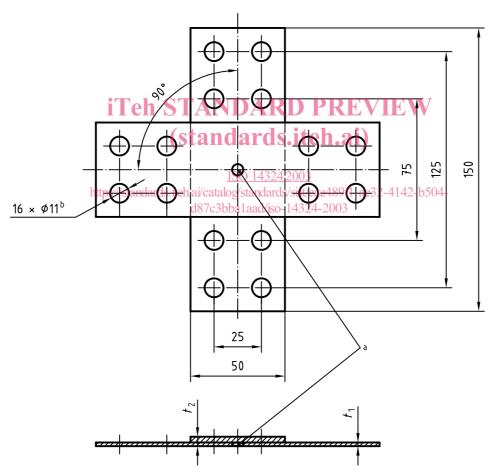
1 shim plate

NOTE Clamping length l_c should exceed specimen width b.

a Spot weld

Figure 1 — Design of shear fatigue test specimen ($t_1 \le t_2$)

Table 1 — Dimensions of shear fatigue test specimens


Dimensions in millimetres

Thickness	Specimen width	Overlap	Free length between clamps
<i>t</i> ₁	b	а	l_{f}
$0.5 \leqslant t_1 \leqslant 1.5$	45 ± 0,5	35	160
$1,5 < t_1 \le 3$	60 ± 0,5	45	200
3 < t ₁ ≤ 6	90 ± 0,8	60	240

4.1.2 Cross-tension fatigue test

Figure 2 shows the design of the cross-tension fatigue test specimen.

Dimensions in millimetres

- a Spot weld
- b Through holes

Figure 2 — Design of cross-tension fatigue test specimen ($t_1 \leqslant t_2$)

4.2 Test sheets

- **4.2.1** Test sheets may be in the sheared condition but all edge burrs should be removed.
- **4.2.2** Care should be taken to ensure that the test sheets are not distorted or bent. Unevenness influences the test results and increases scatter.

4.3 Fabrication of test specimen

- **4.3.1** When spot-welding the test specimen, a suitable jig should be used to ensure alignment of each sheet. The spot weld should be positioned near the centre of the overlapped area, with a tolerance on eccentricity of \pm 0,3 mm for sheet thickness \leq 3,2 mm or \pm 0,5 mm for sheet thickness > 3,2 mm and \leq 6 mm, in either type of specimen.
- **4.3.2** In order to prevent bending of the shear fatigue test specimen when clamping it to the testing machine, either suitable shim plates or offset clamps should be used. The distance between the end of each shim plate and the centre of the spot weld shall be one-half of the value l_f given in Table 1.

5 Testing machine

The testing machine shall have the following capabilities:

- a) the clamping jaws of the testing machine shall be capable of securely holding the test specimen or the jig so that it does not slip during testing; moreover, any discrepancy between the centre lines of the jaws shall be minimized;
- it shall be capable of sufficiently withstanding the maximum load used and of keeping to the accuracy prescribed in f) for the test duration;
- c) the testing arrangement should be such that the development of fatigue cracking in either side of the specimen can be monitored visually or by using suitable equipment;
- d) testing machines with load or displacement control shall be capable of indicating or recording either the mean load and the load range, or the maximum load and the minimum load, together with the number of applied load cycles;
- e) the testing machine shall not automatically restart if stoppages occur due to interruption of the electrical supply or other reasons;
- f) the maximum error in the load shall be either 3 % of the indicated load or 0,5 % of the rated capacity of the testing machine.

6 Test methods

6.1 Test jig

The shape and dimensions of a jig used in the cross-tension test are shown in Figure 3. The chamfered side of the clamping plates shall be positioned on the spot welded side of the test specimen.

6.2 Clamping of test specimens

At the time of clamping the test specimen, the loading axis of the testing machine and the centre line of the test specimen should coincide. Also, the test specimen shall be firmly mounted in the testing machine, so that it does not loosen during the test. However, the method of clamping shall not impose appreciable forces on the spot weld in the test specimen. When clamping the test specimen, shim plates shall be used to avoid misalignment of the test specimen as shown in Figures 1 and 4.

© ISO 2003 — All rights reserved