
INTERNATIONAL STANDARD ISO/IEC 9899:1990
TECHNICAL CORRIGENDUM 1

Published 1994-09-15
Corrected and reprinted 1995-09-I 5

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION*ME~~YHAPO~HAfl OPTAHM3ALWlfl I-IO CTAH~APTl43ALWlWORGANISATION INTERNATIONALE DE NORMALISATION

INTERNATIONAL ELECTROTECHNICAL COMMISSION*ME))<,4YHAPOfiHAfl 3JlEKTPOTEXHM4ECKAfl KOMVlCCVlR l COMMISSION IiLECTROTECHNIQUE INTERNATIONALE

Programming languages - C
TECHNICAL CORRIGENDUM 1

Langages de programmation - C

RECTlFlCATIF TECHNIQUE I

Technical corrigendum 1 to International Standard lSO/IEC 9899:1990 was prepared by Joint Technical Committee
lSO/lEC JTC 1, information technology.

Page 6
In sub&use 5.1.1.3, lines 15-l 7, change:
A conforming implementation shall produce at least one diagnostic message (identified in an implementa-
tion-defined manner) for every translation unit that contains a violation of any syntax rule or constraint.
to:
A conforming implementation shall produce at least one diagnostic message (identified in an implementa-
tion-defined manner) for every translation unit that contains a violation of any syntax rule or constraint,
even if the behavior is also explicitly specified as undefined or implementation-defined.
Add to subclause 5.1 .1.3:
Example
An implementation shall issue a diagnostic for the translation unit:
char i;
int i;
because in those cases where wording in this International Standard describes the behavior for a construct
as being both a constraint error and resulting in undefined behavior, the constraint error shall be diagnosed.
Page 13
In subclause 5.2.4.1, lines 1-2, change:
- 15 nested levels of compound statements, iteration control structures, and selection control structures
to:
- 15 nested levels of compound statements, iteration statements, and selection statements

ICS35.060 Ref. No. ISO/IEC 9899: 199O/Cor. 1:1994(E)

Descriptors: data processing, programming (computers), computer software, programming languages, C (programming language).

0 ISO/IEC 1994

Printed in Switzerland

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990/Cor 1:1994
https://standards.iteh.ai/catalog/standards/sist/abe89796-34e9-4954-82d9-

dafb8903babd/iso-iec-9899-1990-cor-1-1994

ISO/IEC 9899:1990/Cor.l:1994(E)

Page 18
Add to subclause 6.1, (Semantics):
A header name preprocessing token is only recognized within a #include preprocessing directive, and
within such a directive, a sequence of characters that could be either a header name or a string literal is
recognized as the former.
Page 20
Add to subclause 6.1.2, (Semantics):
When preprocessing tokens are converted to tokens during translation phase 7, if a preprocessing token
could be converted to either a keyword or an identifier, it is converted to a keyword.
Page 21
In subclause 6.1.2.2, change:
If the declaration of an identifier for an object or a function contains the storage-class specifier extern,
the identifier has the same linkage as any visible declaration of the identifier with file scope. If there is no
visible declaration with file scope, the identifier has external linkage.
to:
For an identifier declared with the storage-class specifier extern in a scope in which a prior declaration
of that identifier is visible*, if the prior declaration specifies internal or external linkage, the linkage of the
identifier at the latter declaration becomes the linkage specified at the prior declaration. If no prior
declaration is visible, or if the prior declaration specifies no linkage, then the identifier has external linkage.
Footnote *: As specified in 6.1.2.1, the latter declaration might hide the prior declaration.]
Page 25
In subclause 6.1.2.6, lines 19-20, change:
For an identifier with external or internal linkage declared in the same scope as another declaration for that
identifier, the type of the identifier becomes the composite type.
to:
For an identifier with internal or external linkage declared in a scope in which a prior declaration of that
identifier is visible*, if the prior declaration specifies internal or external linkage, the type of the identifier
at the latter declaration becomes the composite type. Footnote *: As specified in 6.1.2.1, the latter
declaration might hide the prior declaration.]
Page 32
In subclause 6.1.7, lines 32-34, delete:
Constraint
Header name preprocessing tokens shall only appear within a #include preprocessing directive.
Add to subclause 6.1.7, (Semantics):
A header name preprocessing token is recognized only within a #include preprocessing directive.
Page 38
In sub&use 6.3, lines 18-21, change:
An ob’ect shall have its stored value accessed only by an lvalue expression that has one of the following
types: 6 4 ’
- the declared type of the object,
- a qualified version of the declared type of the object,
to:
An ob’ect shall have its stored value accessed only by an lvalue expression that has one of the following
types: 6 4

r a type compatible with the declared type of the object,
- a qualified version of a type compatible with the declared type of the object,
Page 40
In subclause 6.3.2.2, line 35, change:
The value of the function call expression is specified in 6.6.6.4.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990/Cor 1:1994
https://standards.iteh.ai/catalog/standards/sist/abe89796-34e9-4954-82d9-

dafb8903babd/iso-iec-9899-1990-cor-1-1994

ISO/IEC 9899:1990/Cor.l:1994(E)

to:
If the expression that denotes the called function has type pointer to function returning an object type, the
function call expression has the same type as that object type, and has the value determined as specified in
6.6.6.4. Otherwise, the function call has type void.
Page 54
Add to subclause 6.3.16.1, another Example:
In the fragment:

char c;
int i;
long 1;

l=(c=i);
the value of i is converted to the type of the assignment-expression c = i, that is, char type. The value
of the expression enclosed in parenthesis is then converted to the type of the outer assignment-expression,
that is, long type.
Page 58
Add to subclause 6.5.1, (Semantics):
If an aggregate or union object is declared with a storage-class specifier other than typedef, the properties
resulting from the storage-class specifier, except with respect to linkage, also apply to the members of the
object, and so on recursively for any aggregate or union member objects.
Page 62
In subclause 6.5.2.3, line 27, change:
occurs prior to the declaration that defines the content
to:
occurs prior to the } following the struct-declaration-list that defines the content
Page 63
Add to subclause 6.5.2.3, another Example:
An enumeration type is compatible with some integral type. An implementation may delay the choice of
which integral type until all enumeration constants have been seen. Thus in:
enuxn f { c = sizeof (enum f));
the behavior is undefined since the size of the respective enumeration type is not necessarily known when
sizeof is encountered.
Page 68
In sub&use 6.5.4.3, lines 2-4, replace:
In a parameter declaration, a single typedef name in parentheses is taken to be an abstract declarator that
specifies a function with a single parameter, not as redundant parentheses around the identifier for a
declarator.
with:
If, in a parameter declaration, an identifier can be treated as a typedef name or as a parameter name, it shall
be taken as a typedef name.
In subclause 654.3, lines 22-25, change:
(For each parameter declared with function or array type, its type for these comparisons is the one that
results from conversion to a pointer type, as in 6.7.1. For each parameter declared with qualified type, its
type for these comparisons is the unqualified version of its declared type.)
to:
(In the determination of type compatibility and of a composite type, each parameter declared with function
or array type is t&en as having the type that results from conversion to a pointer type, as in 6.7.1, and each
parameter declared with qualified type is taken as having the unqualified version of its declared type.)

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990/Cor 1:1994
https://standards.iteh.ai/catalog/standards/sist/abe89796-34e9-4954-82d9-

dafb8903babd/iso-iec-9899-1990-cor-1-1994

ISO/IEC 9899:1990/Cor.l:1994(E)

Page 71
In subclause 6.5.7, line 39, change:
All unnamed structure or union members are ignored during initialization.
to:
Except where explicitly stated otherwise, for the purposes of this subclause unnamed members of objects
of structure and union type do not participate in initialization. Unnamed members of structure objects have
indeterminate value even after initialization. A union object containing only unnamed members has
indeterminate value even after initialization.
Pages 71 and 72
In subclause 6.5.7, page 71, line 41 through page 72, line 2, change:
If an object that has static storage duration is not initialized explicitly, it is initialized implicitly as if every
member that has arithmetic type were assigned 0 and every member that has pointer type were assigned a
null pointer constant,
to:
If an object that has static storage duration is not initialized explicitly, then:
- if it has pointer type, it is initialized to a null pointer;
- if it has arithmetic type, it is initialized to zero;
- if it is an aggregate, every member is initialized (recursively) according to these rules;
- if it is a union, the first named member is initialized (recursively) according to these rules.
Page 72
In subclause 6.5.7, line 11, change:
The initial value of the object is that of the expression.
to:
The initial value of the object, including unnamed members, is that of the expression.
Page 80
In subclause 6.6.6.4, lines 30-32, replace:
If the expression has a type different from that of the function in which it appears, it is converted as if it
were assigned to an object of that type.
with:
If the expression has a type different from the return type of the function in which it appears, the value is
converted as if by assignment toan object having the return type of the function.*
Footnote *: The return statement is not an assignment. The overlap restriction in subclause 6.3.16.1
does not apply to the case of function return.]
Add to subclause 6.6.6.4:
Example
In:
struct
union

struct
I

s {double i;) f (void);
(struct {int fl;

struct s f2;) ul;
struct (struct s f3;

irit fl;} u2;
19 .

s &void)

return g.ul. f2;
1

/* (. . . */
g.u2.f3 = f();
the behavior is defined.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990/Cor 1:1994
https://standards.iteh.ai/catalog/standards/sist/abe89796-34e9-4954-82d9-

dafb8903babd/iso-iec-9899-1990-cor-1-1994

ISO/IEC 9899: 1990/Car. 1: 1994(E)

Page 84
Add to subclause 6.7.2, a second Example:
If at the end of the translation unit containing
int it];
the array i still has incomplete type, the array is assumed to have one element. This element is initialized
to zero on program startup.
Page 86
Add to subclause 6.8, line 5, (Description):
A new-line character ends the preprocessing directive even if it occurs within what would otherwise be an
invocation of a function-like macro.
Add to subclause 6.8, (Constraints):
In the definition of an object-like macro, if the first character of a replacement list is not a character required
by subclause 52.1, then there shall be white-space separation between the identifier and the replacement . list * .
Footnote *: This allows an implementation to choose to interpret the directive:
#define THISANDTHAT (a, b) ((a) + (b))
as defining a function-like macro THISANDTHAT, rather than an object-like macro THIS. Whichever
choice it makes, it must also issue a diagnostic.]
Page PO
Add to subclause 6.8.3.3:
Example
#define hash hash # ## #
#define &&(a) # a
#define in between(a) mkstr(a)
#&fine joL(c, d) in between (c hash hash d) -
char PII = join(x, y); /* equivalent-to char p[] = "X ## y"; */
The expansion produces, at various stages:
join (x, y)

in between(x hash hash y) - -

in between(x ## y)

dstr(x ## y)

"X ## y "
In other words, expanding hash hash produces a new token, consisting of two adjacent sharp signs, but -
this new token is not the catenation operator.
Page 96
Add to subclause 7.1.2, (before Forward references):
Any definition of an object-like b macro described in this clauseshallexpand tocode that is fully protected
by parentheses where necessary ‘, so that it groups in an arbitrary expression as if it were a single identifier.
In subclause 7.14 lines 32-33, change:
However, if the identifier is declared or defined in more than one header,
to:
However, if an identifier is declared or defined in more than one header,
Page 120 %
In subclause 7.7, lines 14-16, change:
and the following, each of which expands to a positive integral constant expression that is the signal number
corresponding to the specified condition:
to:

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990/Cor 1:1994
https://standards.iteh.ai/catalog/standards/sist/abe89796-34e9-4954-82d9-

dafb8903babd/iso-iec-9899-1990-cor-1-1994

ISO/IEC 9899:1990/Cor.l:1994(E)

and the following, which expand to positive integral constant expressions with distinct values that are the
signal numbers, each corresponding to the specified condition:
Page 132
In subclause 7.9.6.1, lines 37-38, change:
For o conversion, it increases the precision to force the first digit of the result to be a zero.
to:
For o conversion, it increases the precision, if and only if necessary, to force the first digit of the result to
be a zero.
Page 135
In subclause 7.9.6.2, lines 31-33, change:
An input item is defined as the longest matching sequence of input characters, unless that exceeds a specified
field width, in which case it is the initial subsequence of that length in the sequence.
to:
An input item is defined as the longest sequence of input characters which does not exceed any spccificd
field width and which is, or is a prefix of, a matching input sequence.
Page 137
In subclause 79.6.2, delete:
If conversion terminates on a conflicting input character, the offending input character is left unread in the
input stream.
Add to subclause 79.6.2, line 4 (the n conversion specifier):
No argument is converted, but one is consumed. If the conversion specification with this conversion specifier
is not-one of %n, %ln, or %hn, the behavior is undefined.
Add to subclause 7.9.6.2:
If conversion terminates on a conflicting input character, the offending input character is left unread in the
input stream.* Footnote *: fscanf pushes back at most one input character onto the input stream.
Therefore, some sequences that are acceptable to st rt od, st rtol, or st rtoul are unacceptable to
fscanf.]
Page 138
Add to subclause 7.9.6.2, another Example:
In:
#include <stdio.h>
/* . . . */
int dl, d2, nl, n2, i;
i = sscanf (~1123~~, vw%d%n%n%dlv, &dl, &ml, &n2, &d2);
the value 123 is assigned to dl and the value 3 to nl. Because %n can never get an input failure the value
of 3 is also assigned to n2. The value of d2 is not affected. The value 3 is assigned to i.
Page 145
In subclause 7.9.9.2, lines 39-40, change:
a value returned by an earlier call to the ftell function
to:
a value returned by an earlier successful call to the f tell function
Page 146
In subclause 7.9.9.3, lines 1 O-11, change:
a value obtained from an earlier call to the fgetpos function
to:
a value obtained from an earlier successful call to the fgetpos function

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990/Cor 1:1994
https://standards.iteh.ai/catalog/standards/sist/abe89796-34e9-4954-82d9-

dafb8903babd/iso-iec-9899-1990-cor-1-1994

ISO/IEC 9899:1990/Cor.l:1994(E)

Page 162
Add to subclause 7.11 .I:

Where an argument declared as size t n specifies the length of the array for a function, n can have the
value zero on a call to that function. unless explicitly stated otherwise in the description of a particular
function in this subclause, pointer arguments on such a call must still have valid values, as described in
subclause 7.1.7. On such a call, a function that locates a character finds no occurrence, a function that
compares two character sequences returns zero, and a function that copies characters copies zero characters.
Page 172
In subclause 7.12.2.3, line 16, change:

if (mktime(&tixne~str) = -1)
to:

if (mktime(&time str) == (time t) -1) -
Page 200
Add to subclause G.2:
- A program contains no function called main (5.1.2.2.1).
Page 201
Add to subclause G.2:
- A storage-class specifier or type qualifier modifies the keyword void as a function parameter type list
(654.3).
Add to subclause G.2:
- An array subscript is out of range, even if an object is apparently accessible with the given subscript (as
in the lvalue expression a [1] [7] given the declaration int a [4) [51) (6.3.6).
Page 202
Add to subclause G.2:
- A fully expanded macro replacement list contains a function-like macro name as its last preprocessing
token (6.8.3).
Page 203
Add to subclause G.2:
- A call to a library function exceeds an environmental limit (7.9.2,7.9.3,7.9.4.4,7.9.6.1,7.10.2.1).
Page 217
In the index) change:
static storage-class specifier, 3.1.2.2,6.1.2.4,6.5.1,6.7
to:
static storage-class specifier, 6.1.2.2,6.1.2.4,6.5.1,6.7

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990/Cor 1:1994
https://standards.iteh.ai/catalog/standards/sist/abe89796-34e9-4954-82d9-

dafb8903babd/iso-iec-9899-1990-cor-1-1994

This page intentionally left blank iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 9899:1990/Cor 1:1994
https://standards.iteh.ai/catalog/standards/sist/abe89796-34e9-4954-82d9-

dafb8903babd/iso-iec-9899-1990-cor-1-1994

	À-L−fŸZaçÓÌ¸ìı�]Ô‹€îU}¤ﬂ²ë~hìË÷vº¬šèÕËoÏ−�K6��K�	�~ŁŒÙﬂX˜-Ô–E;Ä�¢jvÔ1h˝ƒdÿR³¼�êQpÆ�$Ö¶�6u|¼e™»*Û�!ûÉ4ÞjÃ’V¹š�<†[²ytêÖvz&

