SLOVENSKI STANDARD **SIST EN IEC 61869-9:2019** 01-oktober-2019 Nadomešča: SIST EN 60044-8:2003 Instrumentni transformatorji - 9. del: Digitalni vmesnik za instrumentne transformatorje (IEC 61869-9:2016) Instrument Transformers - Part 9: Digital interface for instrument transformers (IEC 61869-9:2016) Messwandler - Teil 9: Digitale Schnittstelle für Messwandler (IEC 61869-9:2016) (standards.iteh.ai) Transformateurs de mesure - Partie 9: Interface numérique pour les transformateurs de mesure (IEC 61869-9:2016) SIST EN IEC 61869-9:2019 https://standards.iteh.ai/catalog/standards/sist/65b167b1-eeb4-44a3-ad18- 4e492a749cec/sist-en-iec-61869-9-2019 eveten z: EN IEC 61869-9:2019 Ta slovenski standard je istoveten z: ICS: 17.220.20 Merjenje električnih in magnetnih veličin Measurement of electrical and magnetic quantities **SIST EN IEC 61869-9:2019** en **SIST EN IEC 61869-9:2019** # iTeh STANDARD PREVIEW (standards.iteh.ai) SIST EN IEC 61869-9:2019 https://standards.iteh.ai/catalog/standards/sist/65b167b1-eeb4-44a3-ad18-4e492a749cec/sist-en-iec-61869-9-2019 EUROPEAN STANDARD NORME EUROPÉENNE **EN IEC 61869-9** EUROPÄISCHE NORM July 2019 ICS 17.220.20 Supersedes EN 60044-8:2002 (partially) **English Version** # Instrument transformers - Part 9: Digital interface for instrument transformers (IEC 61869-9:2016) Transformateurs de mesure - Partie 9: Interface numérique pour les transformateurs de mesure (IEC 61869-9:2016) Messwandler - Teil 9: Digitale Schnittstelle für Messwandler (IEC 61869-9:2016) This European Standard was approved by CENELEC on 2016-06-01. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member. This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions. CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels ## EN IEC 61869-9:2019 (E) ## **European foreword** The text of document 38/502/FDIS, future edition 1 of IEC 61869-9, prepared by IEC/TC 38 "Instrument transformers" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN IEC 61869-9:2019. The following dates are fixed: - latest date by which the document has to be implemented at national (dop) 2020-01-05 level by publication of an identical national standard or by endorsement - latest date by which the national standards conflicting with the document have to be withdrawn (dow) 2022-07-05 Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights. This document supersedes EN 60044-8:2002 (partially). ## iTeh STANDARD PREVIEW (standards.iten.ai) The text of the International Standard IEC 61869-9:2016 was approved by CENELEC as a European Standard without any modification. 4e492a749cec/sist-en-iec-61869-9-2019 In the official version, for Bibliography, the following notes have to be added for the standards indicated: | IEC 60044-7:1999 | NOTE | Harmonized as EN 60044-7:2000 (not modified) | |--------------------|------|--| | IEC 60044-8:2002 | NOTE | Harmonized as EN 60044-8:2002 (not modified) | | IEC 61850 (series) | NOTE | Harmonized as EN 61850 (series) | | IEC 61850-5:2013 | NOTE | Harmonized as EN 61850-5:2013 (not modified) | | IEC 61850-8-1 | NOTE | Harmonized as EN 61850-8-1 | | IEC 61850-10 | NOTE | Harmonized as EN 61850-10 | | IEC 61869 (series) | NOTE | Harmonized as EN 61869 (series) | | IEC 62271-3 | NOTE | Harmonized as EN 62271-3 | ## Annex ZA (normative) ## Normative references to international publications with their corresponding European publications The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies. NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu. Clause 2 of IEC 61869-6:2016 is applicable with the following additions: | <u>Publication</u> | <u>Year</u> | <u>Title</u> | EN/HD | <u>Year</u> | |--------------------|----------------|---|-----------------|-------------| | IEC 61588 | 2009
iTel | systems | | - | | IEC 61850-6 | 2009 | Configuration idescription 20 language for | S:
or | 2010 | | | https://standa | arcommunication an in rdelectrical 67 substation related to 41 EDs sist-en-iec-61869-9-2019 | S -ad18- | | | IEC 61850-7-1 | 2011 | Communication networks and systems for power utility automation - Part 7-1: Basicommunication structure - Principles and models | C | 2011 | | IEC 61850-7-2 | 2010 | Communication networks and systems for power utility automation - Part 7-2: Basinformation and communication structure Abstract communication service interfact (ACSI) | c
- | 2010 | | IEC 61850-7-3 | 2010 | Communication networks and systems for power utility automation - Part 7-3: Bas communication structure - Common data classes | C | 2011 | | IEC 61850-8-1 | 2011 | Communication networks and systems for power utility automation - Part 8-1: Specific communication service mapping (SCSM) Mappings to MMS (ISO 9506-1 and ISO 9506-2) and to ISO/IEC 8802-3 | c
- | 2011 | | IEC 61850-9-2 | 2011 | Communication networks and systems for power utility automation - Part 9-2: Specific communication service mapping (SCSM) Sampled values over ISO/IEC 8802-3 | C | 2011 | | IEC 61850-10 | 2012 | Communication networks and systems for | or EN 61850-10 | 2013 | ## EN IEC 61869-9:2019 (E) | <u>Publication</u> | <u>Year</u> | <u>Title</u> <u>EN/HD</u> power utility automation - Part 10:
Conformance testing | <u>Year</u> | |-----------------------------------|-------------|---|-------------| | IEC 61869-6 | 2016 | Instrument transformers - Part 6: Additional EN 61869-6 general requirements for low-power instrument transformers | 2016 | | IEC/IEEE 61850-9-3 | 2016 | Communication networks and systems for -
power utility automation - Part 9-3:
Precision time protocol profile for power
utility automation | - | | UCA (International
Users Group | - | Implementation guideline for digital interface to instrument transformers using IEC 61850-9-2 | | ## iTeh STANDARD PREVIEW (standards.iteh.ai) SIST EN IEC 61869-9:2019 https://standards.iteh.ai/catalog/standards/sist/65b167b1-eeb4-44a3-ad18-4e492a749cec/sist-en-iec-61869-9-2019 IEC 61869-9 Edition 1.0 2016-04 ## INTERNATIONAL STANDARD ## Instrument transformers STANDARD PREVIEW Part 9: Digital interface for instrument transformers <u>SIST EN IEC 61869-9:2019</u> https://standards.iteh.ai/catalog/standards/sist/65b167b1-eeb4-44a3-ad18-4e492a749cec/sist-en-iec-61869-9-2019 INTERNATIONAL ELECTROTECHNICAL COMMISSION ICS 17.220.20 ISBN 978-2-8322-3331-3 Warning! Make sure that you obtained this publication from an authorized distributor. ## CONTENTS | FO | REWOR | RD | | 4 | |-----|---------|----------------------|--|-----| | INT | RODUC | CTION | | 7 | | 1 | Scope | | | .12 | | 2 | Norma | tive refere | ences | .12 | | 3 | Terms | and defin | itions | .13 | | | 3.5 | Terms an | d definitions related to other ratings | .13 | | | 3.7 | | abbreviations | | | 4 | Norma | l and spe | cial service conditions | .14 | | 5 | Ratings | s | | .14 | | | 5.6 | Rated ac | ccuracy class | .14 | | | 5.901 | Performa | ance requirements | .15 | | 6 | Design | and cons | struction | .16 | | | 6.901 | Technolo | ogical boundaries | .16 | | | _ | 3.901.1 | Interface point | | | | _ | | Digital output interface | | | | - | 3.901.3 | Human-machine interface | | | | | Electrica
3.902.1 | Il requirements | | | | | 5.902.1
5.902.2 | Frequency response requirements | | | | | | ation of the communications profile 1.21) | | | | | | | | | | | 5.903.2 | Variants SIST EN IEC 61869-9:2019 | .19 | | | 6 | 6.903.3 ht | General Variants SIST EN IEC 61869-9:2019 tps://standards.iteh.ai/catalog/standards/sist/65b167b1-eeb4-44a3-ad18- Digital output sample rates Digital output sample rates | .20 | | | 6 | 3.903.4 | Logical devices | .21 | | | 6 | 3.903.5 | Logical nodes LPHD | .21 | | | | 3.903.6 | Logical nodes LLN0 | | | | | | Logical nodes TCTR | | | | | 5.903.8 | Logical nodes TVTR | | | | | 5.903.9 | Quality | | | | | 3.903.10
3.903.11 | Dataset(s) Multicast sampled value control block(s) | | | | | | Configuration of the merging unit | | | | | | Rated conformance classes | | | | | | nization | | | | | 3.904.1 | General | | | | 6 | 3.904.2 | Precision time protocol synchronization | .34 | | | 6 | 6.904.3 | 1PPS synchronization | .35 | | | | 3.904.4 | Sample value message SmpSynch attribute | | | | | | Holdover mode | | | | | 5.904.6 | Free-running mode | | | 7 | | | Time adjustments | | | 7 | | | ······ | | | | 7.2 | Type tes
7.2.6 | ts Test for accuracy | | | | | | Digital output conformance tests | | | | | '.2.902 | Maximum processing delay time test | | | | | | | | | 7.2.903 Loss of synchronization tests | | |--|----| | 7.2.904 1PPS test | | | · · · · · · · · · · · · · · · · · · · | | | Annex 9B (informative) Time synchronization and management example | | | · · · · · · · · · · · · · · · · · · · | | | Annex 9D (informative) Test circuits for accuracy measurement | | | Annex 9E (informative) Electronic nameplate | | | Bibliography | 60 | | Figure 901 – General block diagram of an electronic LPIT with digital output | 8 | | Figure 902 – General illustration of the objects within a merging unit (example) | 9 | | Figure 903 – Electronic LPIT with digital output (concept example) | 10 | | Figure 904 – Standalone merging unit | 11 | | Figure 905 – Duplex LC connector | 16 | | Figure 906 – Maximum processing delay time | 17 | | Figure 907 – Output message timestamp point | 19 | | Figure 908 – TCTR naming example | 23 | | Figure 909 – 1PPS signal waveform at the merging unit clock input | 35 | | Figure 910 – Time adjustment example (6 ASDU example) E.V.E.V | 37 | | Figure 9A.1 – Nomogram for cu (rentandards.iteh.ai) | 41 | | Figure 9A.2 – Nomogram for voltage | 42 | | Figure 9B.1 – Sampled value signal processing example showing 2ASDUs per message (F4800S2I4U4 example).a/catalog/standards/sist/65b167b1-eeb4-44a3-ad18- | 12 | | Figure 9D.1 – Example test circuit | 43 | | Figure 9D.1 – Example test circuit | | | Figure 9D.2 – Example test circuit | 30 | | Table 901 – Maximum processing delay time limits | 18 | | Table 902 – Standard sample rates | 20 | | Table 903 – Extensions to the LPHD class | 21 | | Table 904 – AmpSv object attribute values | 23 | | Table 905 – Extensions to the TCTR class | 24 | | Table 906 – VolSv object attribute values | 25 | | Table 907 – Extensions to the TVTR class | 25 | | Table 908 – Configuration parameters of the merging unit | 28 | | Table 909 – Basic conformance statement | 29 | | Table 910 – ACSI models conformance statement | 29 | | Table 911 – ACSI service conformance statement | 31 | | Table 912 – PICS for A-Profile support | 33 | | Table 913 – PICS for T-Profile support | 34 | ## INTERNATIONAL ELECTROTECHNICAL COMMISSION ## **INSTRUMENT TRANSFORMERS -** ## Part 9: Digital interface for instrument transformers ### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, EC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. SIST EN IEC 61869-9:2019 - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 61869-9 has been prepared by IEC technical committee 38: Instrument transformers. This first edition replaces the corresponding specific requirements previously contained in IEC 60044-8, published in 2002. The text of this standard is based on the following documents: | FDIS | Report on voting | |-------------|------------------| | 38/502/FDIS | 38/508/RVD | Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table. This publication has been drafted in accordance with the ISO/IEC Directives, Part 2. IEC 61869-9:2016 © IEC 2016 - 5 - A list of all parts in the IEC 61869 series, published under the general title Instrument transformers, can be found on the IEC website. This publication contains an attached file in the form of a .xml file. This file is intended to be used as a complement and does not form an integral part of the publication. This International Standard contains specific requirements for electronic low power instrument transformers (LPIT) having a digital output. This Part 9 is to be read in conjunction with, and is based on, IEC 61869-1:2007, General Requirements and IEC 61869-6:2016. However, the reader is encouraged to use its most recent edition. This Part 9 follows the structure of IEC 61869-6 and IEC 61869-1 and supplements or modifies their corresponding clauses/subclauses. When a particular clause/subclause of Part 6 is not mentioned in this Part 9, that clause/subclause applies. When this standard states "addition", "modification" or "replacement", the relevant text in Part 6 is to be adapted accordingly. When a particular clause/subclause of Part 1 is not mentioned in Part 6, that clause/subclause applies. When part 6 states "addition", "modification" or "replacement", the relevant text in Part 1 is to be adapted accordingly. iTeh STANDARD PREVIEW For additional clauses, subclauses, figures, tables, annexes or note, the following numbering system is used: (standards.iteh.ai) - clauses, subclauses, tables, figures and notes that are numbered starting from 901 are additional to those in Part 1; https://standards.iteh.ai/catalog/standards/sist/65b167b1-eeb4-44a3-ad18- - additional annexes are lettered 9A 9B, etcen-iec-61869-9-2019 An overview of the planned set of standards at the date of publication of this document is given below. The updated list of standards issued by IEC TC38 is available at the website: www.iec.ch **-6-** | PRODUCT FAMILY STANDARDS | | PRODUCT
STANDARD
IEC | PRODUCTS | OLD
STANDARD
IEC | |-----------------------------------|------------------------|---|--|---| | | | 61869-2 | ADDITIONAL REQUIREMENTS FOR CURRENT TRANSFORMERS | 60044-1
60044-6 | | | | 61869-3 | ADDITIONAL REQUIREMENTS FOR INDUCTIVE VOLTAGE TRANSFORMERS | 60044-2 | | | | | 61869-4 | ADDITIONAL REQUIREMENTS FOR COMBINED TRANSFORMERS | | 61869-1 | | 61869-5 | ADDITIONAL REQUIREMENTS FOR CAPACITOR VOLTAGE TRANSFORMERS | 60044-5 | | | https://standards.iteh | 61869-7 | ADDITIONAL REQUIREMENTS FOR ELECTRONIC VOLTAGE TRANSFORMERS | 60044-7 | | | | 61869-8 | ADDITIONAL REQUIREMENTS FOR ELECTRONIC CURRENT TRANSFORMERS | 60044-8 | | GENERAL
REQUIREMENTS | | 61869-9 | DIGITAL INTERFACE FOR INSTRUMENT TRANSFORMERS | | | FOR
INSTRUMENT
TRANSFORMERS | | 61869-10 | ADDITIONAL REQUIREMENTS FOR LOW POWER PASSIVE CURRENT TRANSFORMERS | | | | | 61869-11 | ADDITIONAL REQUIREMENTS FOR LOW POWER VOLTAGE TRANSFORMERS | 60044-7 | | | | 61869-12) /
tandar | ADDITIONAL REQUIREMENTS FOR COMBINED ELECTRONIC INSTRUMENT TRANSFORMERS AND COMBINED STAND ALONE INSTRUMENT TRANSFORMERS | | | | | 61869-13 | STAND ALONE MERGING UNIT | | | | | .6 /1869 01/4stand
92a749cec/sist | ADDITIONAL REQUIREMENTS FOR DC CURRENT TRANSFORMERS | | | | | 61869-15 | ADDITIONAL REQUIREMENTS FOR DC
VOLTAGE TRANSFORMERS FOR DC
APPLICATIONS | | The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be - reconfirmed, - withdrawn, - · replaced by a revised edition, or - · amended. A bilingual version of this publication may be issued at a later date. IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer. **-7-** ### INTRODUCTION ### General This standard is a product family standard for instrument transformers. It provides an application of the standard series IEC 61850, which details layered substation communication architecture in the world of instrument transformers. By providing tutorial material such as examples and explanations, it also provides access for instrument transformer, protective relay and meter experts to concepts and methods applied in the IEC 61850 series. Compared to instrument transformers, digital communication technology is subject to on-going changes which are expected to continue in the future. Significant experience with electronics integrated directly into instrument transformers has yet to be gathered on a broader basis, as this type of equipment is not widely spread in the industry and a change of paradigm has not yet occurred. ### Position of this standard in relation to the IEC 61850 series The IEC 61850 series is a standard intended to be used for communication networks and systems for power utility automation. The most important parts of this series define: - a) information models for the substation automation system; V - b) these information models include both the models of the instrument transformers and other process equipment (like circuit-breakers and disconnectors), and the models of the substation automation system (like protection relays and meters). The models are defined in IEC 61850-7-3 and IEC 61850-7-4; IEC 61869-9:2019 - c) the communication/stoetween intelligent delectronic 6 devices 4 (IEDs)8-of the substation automation system. The abstract models are defined in IEC 61850-7-2 and the mappings on communication stacks are defined in IEC 61850-8-1 and IEC 61850-9-2; - d) a configuration language used to describe the configuration aspects of the substation automation system is described in IEC 61850-6; - e) conformance testing of the communication interfaces of the IEDs of the power utility automation system including their data models. The conformance testing is defined in IEC 61850-10. Typically, in a traditional system, IEDs like bay level controllers or protection relays interface directly through analogue signals to instrument transformers. In that case, the data models of the instrument transformers are implemented in these bay level devices. However, this is not the only realization. In the case where electronics are integrated directly into electronic LPIT, the above-mentioned data models should be implemented within the instrument transformer and the instrument transformer needs to support a communication interface. The part of an electronic LPIT that does this is known as the merging unit. IEC 61850, being a system oriented standard series, leaves many options open in order to support present and future requirements of all sizes of substations at all voltage levels. To reduce the engineering amount required to achieve interoperability for the digital interface between instrument transformers and equipment that uses the digital signal (like protective relays, meters or bay level controllers), this standard specifies additional constraints on implementing a digital communication interface. The IEC 61869-9 standard: - replaces the IEC 60044-8 digital solution; - provides a product standard for instrument transformers with a digital interface according to the IEC 61850 series; similar to what IEC 62271-3 offers for switchgear; - includes backward compatibility for the UCA International Users Group Implementation Guideline for Digital Interface to Instrument Transformers Using IEC 61850-9-2; - uses IEC 61588 based time synchronization in accordance with IEC/IEEE 61850-9-3, with an option for 1PPS (pulse per second). ### Overview of the digital interface for instrument transformers An illustrative general block diagram of an instrument transformer with digital output is shown in Figure 901. It shows multiple current and/or voltage information coming from the secondary converters (SC in Figure 901) and fed into a common block labelled "merging unit". The merging unit performs all the data processing (sampling, analogue to digital conversion, scaling, message formatting, etc.) necessary to produce a time-coherent output data stream according to this standard. For the purposes of this standard a merging unit is a physical unit (hardware subsystem) used to assemble and transmit digital output data frames. Figure 901 – General block diagram of an electronic LPIT with digital output A merging unit is modelled as one or more logical devices that contain multiple logical nodes as illustrated in Figure 902. Figure 902 – General illustration of the objects within a merging unit (example) Current and voltage measurements in the example merging unit in Figure 902 are modelled per IEC 61850-7-1 by using the following logical nodes: - Class TCTR per IEC 61850-7-4, instantiated individually for each of the three current transformer phases, and for the neutral current measurement. - Class **TVTR** per IEC 61850-7-4, instantiated individually for each of the three voltage transformer phases, and for the neutral voltage measurement. - Logical node zero LLN0 containing instances of the sampled value control blocks (MSVCB03 and MSVCB04 in this example) controlling simultaneous publishing of IEC 61850-9-2 data streams (in this example one with 4 800 samples per second and 2 samples per frame yielding a frame rate of 2 400 per second, the other with 14 400 samples per second and 6 samples per frame also yielding a frame rate of