

SLOVENSKI STANDARD SIST EN 61851-24:2014

01-september-2014

Sistem kabelskega napajanja električnih vozil - 24. del: Digitalna komunikacija med enosmerno (d.c.) EV-napajalno postajo in električnim vozilom za krmiljenje enosmernega (d.c.) napajanja (IEC 61851-24:2014)

Electric vehicle conductive charging system - Part 24: Digital communication between a d.c. EV charging station and an electric vehicle for control of d.c. charging

iTeh STANDARD PREVIEW

Système de charge conductive pour véhicules électriques - Partie 24: Communication digitale entre la borne de charge à courant continu et le véhicule électrique pour le contrôle de la charge à courant continuog/standards/sist/b688ae46-811f-4f42-99edcd9651c61d95/sist-en-61851-24-2014

Ta slovenski standard je istoveten z: EN 61851-24:2014

ICS:

43.120 Električna cestna vozila Electric road vehicles

SIST EN 61851-24:2014

en

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN 61851-24:2014

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 61851-24

May 2014

ICS 43.120

English Version

Electric vehicle conductive charging system - Part 24: Digital communication between a d.c. EV charging station and an electric vehicle for control of d.c. charging (IEC 61851-24:2014)

Système de charge conductive pour véhicules électriques -Partie 24: Communication digitale entre la borne de charge à courant continu et le véhicule électrique pour le contrôle de la charge à courant continu (CEI 61851-24:2014) Konduktive Ladesysteme für Elektrofahrzeuge - Teil 24: Digitale Kommunikation zwischen einer Gleichstromladestation für Elektrofahrzeuge und dem Elektrofahrzeug zur Steuerung des Gleichstromladevorgangs (IEC 61851-24:2014)

This European Standard was approved by CENELEC on 2014-04-11. CENELEC members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization Comité Européen de Normalisation Electrotechnique Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2014 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.

Foreword

The text of document 69/273/FDIS, future edition 1 of IEC 61851-24, prepared by IEC/TC 69 "Electric road vehicles and electric industrial trucks" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as EN 61851-24:2014.

The following dates are fixed:

•	latest date by which the document has to be implemented at national level by publication of an identical national standard or by endorsement	(dop)	2015-01-11
•	latest date by which the national standards conflicting with the document have to be withdrawn	(dow)	2017-04-11

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such patent rights.

Endorsement notice

The text of the International Standard /EC 61851-24:2014 was approved by CENELEC as a European Standard without any modification.

(standards.iteh.ai)

Annex ZA

(normative)

Normative references to international publications with their corresponding European publications

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

NOTE 1 When an International Publication has been modified by common modifications, indicated by (mod), the relevant EN/HD applies.

NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here: www.cenelec.eu

Publication	<u>Year</u>	Title	<u>EN/HD</u>	<u>Year</u>
IEC 61851-1	2010	Electric vehicle conductive charging system - Part 1: General requirements	EN 61851-1	2011
IEC 61851-23	2014	Electric vehicle conductive charging system - Part 23: D.C. electric vehicle charging station		2013
ISO/IEC 15118-1	iT	Road vehicles – Vehicle to grid communication interface – PREVIE Part 1: General information and use-case definition	W	-
ISO/IEC 15118-2	https://sta	Road vehicles – Vehicle to grid communication interface 24:2014 Part 2: Technical protocol description and 4/4 open systems interconnections (OSI) layer requirements	2-99ed-	-
ISO/IEC 15118-3		Road vehicles - Vehicle to grid communicatio interface - Part 3 Physical layer requirements	n-	-
ISO 11898-1	2003	Road vehicles - Controller area network (CAN) - Part 1: Data link layer and physical signalling	-	-
ISO 11898-2	2003	Road vehicles - Controller area network (CAN) - Part 2: High-speed medium access unit	-	-

iTeh STANDARD PREVIEW (standards.iteh.ai)

Edition 1.0 2014-03

INTERNATIONAL STANDARD

NORME INTERNATIONALE

Electric vehicle conductive charging system PREVIEW Part 24: Digital communication between a d.c. EV charging station and an electric vehicle for control of d.c. charging

SIST EN 61851-24:2014

Système de charge conductive pour véhicules électriques med-Partie 24: Communication digitale entre la borne de charge à courant continu et le véhicule électrique pour le contrôle de la charge à courant continu

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMISSION ELECTROTECHNIQUE INTERNATIONALE

PRICE CODE CODE PRIX

ICS 43.120

ISBN 978-2-8322-1441-1

Warning! Make sure that you obtained this publication from an authorized distributor. Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

 Registered trademark of the International Electrotechnical Commission Marque déposée de la Commission Electrotechnique Internationale

CONTENTS

FOREWORD			
INTE	RODUCTION	5	
1	Scope	6	
2	Normative references	6	
3	Terms and definitions	7	
4	System configuration	7	
5	Digital communication architecture	7	
6	Charging control process	7	
7	Overview of charging control	7	
8	Exchanged information for d.c. charging control	8	
Ann	ex A (normative) Digital communication for control of d.c. EV charging system A	10	
Ann	ex B (normative) Digital communication for control of d.c. EV charging system B	20	
Ann	ex C (normative) Digital communication for control of d.c. charging system C (Combined system)	27	
Bibli	ography		
Figu vehi	re 1 – Digital communication between a d.c. EV charging station and an electric cle for control of d.c. charging	8	
	re A.1 – Sequence diagram of d.c. charging control communication for system A		
	re A.2 – CAN-bus circuit diagram		
Figu stati	re A.3 – Dedicated CAN communication between ² 0/ehicle and d.c. EV charging on	19	
Figu	re B.1 – Sequence diagram of d.c. charging control communication for system B	20	
Tabl	e 1 – Exchanged information for d.c. charging control	8	
Tabl proc	e A.1 – Communication actions and parameters during d.c. charging control ess between system A station and vehicle (1 of 2)	11	
	e A.2 – Exchanged parameter during d.c. charging control process between		
•	em A station and vehicle (1 of 4)		
	e A.3 – The physical/data link layer specifications for system A	18	
	e B.1 – Communication actions and parameters during d.c. charging control ess between system B station and vehicle	21	
Tabl	e B.2 – Parameters in charge handshake stage for system B	22	
Tabl	e B.3 – Parameters in charge parameter configuration stage for system B	23	
Tabl	e B.4 – Parameters in charging stage for system B (1 of 2)	24	
Tabl	e B.5 – Parameters in charge ending stage for system B	25	
Tabl	e B.6 – Error parameters for system B	25	
Tabl	e B.7 – Physical/data link layer specifications for system B	26	
Tabl	e C.1 – Required exchanged parameters for d.c. charging control for system C	28	

IEC 61851-24:2014 © IEC 2014

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTRIC VEHICLE CONDUCTIVE CHARGING SYSTEM -

Part 24: Digital communication between a d.c. EV charging station and an electric vehicle for control of d.c. charging

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committee; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, EC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- https://standards.iteh.ai/catalog/standards/sist/b688ae46-811f-4f42-99ed 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61851-24 has been prepared by IEC technical committee 69: Electric road vehicles and electric industrial trucks.

The text of this standard is based on the following documents:

FDIS	Report on voting
69/273FDIS	69/280/RVD

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts in the IEC 61851 series, published under the general title *Electric vehicle conductive charging system*, can be found on the IEC website.

- 4 -

IEC 61851-24:2014 © IEC 2014

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

iTeh STANDARD PREVIEW (standards.iteh.ai)

IEC 61851-24:2014 © IEC 2014

INTRODUCTION

The introduction and commercialisation of electric vehicles has been accelerated in the global market, responding to the global concerns on CO₂ reduction and energy security. Concurrently, the development of charging infrastructure for electric vehicles has also been expanding. As supplementary system of a.c. charging system, d.c. charging is recognized as an effective solution to extend the available range of electric vehicles, and different d.c. charging systems are being used over the world. The international standardization in terms of charging infrastructure including d.c. charging systems is indispensable for the diffusion of electric vehicles, and this standard is developed for the manufacturers' convenience by providing general specifications for control communication protocols between off-board d.c. charger and electric vehicles.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ELECTRIC VEHICLE CONDUCTIVE CHARGING SYSTEM –

Part 24: Digital communication between a d.c. EV charging station and an electric vehicle for control of d.c. charging

1 Scope

amendments) applies.

This part of IEC 61851, together with IEC 61851-23, applies to digital communication between a d.c. EV charging station and an electric road vehicle (EV) for control of d.c. charging, with an a.c. or d.c. input voltage up to 1 000 V a.c. and up to 1 500 V d.c. for the conductive charging procedure.

The EV charging mode is mode 4, according to IEC 61851-23. The charging station supplied by high voltage a.c. supply is not covered by this standard.

Annexes A, B, and C give descriptions of digital communications for control of d.c. charging specific to d.c. EV charging systems A, B and C as defined in Part 23.

2 Normative references iTeh STANDARD PREVIEW

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any

SIST EN 61851-24:2014

https://standards.iteh.ai/catalog/standards/sist/b688ae46-811f-4f42-99ed-

IEC 61851-1:2010, *Electric* vehicle61conductive851charging system – Part 1: General requirements

IEC 61851-23:2014, Electric vehicle conductive charging system – Part 23: DC electric vehicle charging station

ISO/IEC 15118-1¹, Road vehicles – Vehicle to grid communication interface – Part 1: General information and use-case definition

ISO/IEC 15118-2:—¹, Road vehicles – Vehicle to grid communication interface – Part 2: Technical protocol description and open systems interconnections (OSI) layer requirements

ISO/IEC 15118-3:—¹, Road vehicles – Vehicle to grid communication interface – Part 3 Physical layer requirements

ISO 11898-1:2003, Road vehicles – Controller area network (CAN) – Part 1: Data link layer and physical signalling

ISO 11898-2:2003, Road vehicles – Controller area network (CAN) – Part 2: High-speed medium access unit