INTERNATIONAL STANDARD

ISO 14622

First edition 2000-12-15

Space systems — Structural design — Loads and induced environment

Systèmes spatiaux — Conception des structures — Charges et environnement induit

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 14622:2000 https://standards.iteh.ai/catalog/standards/sist/0b1464d3-8ea2-43f8-a8c8-4e308e1daf32/iso-14622-2000

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 14622:2000 https://standards.iteh.ai/catalog/standards/sist/0b1464d3-8ea2-43f8-a8c8-4e308e1daf32/iso-14622-2000

© ISO 2000

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

Contents Page Foreword......iv Scope1 2 Terms and definitions1 Determination of loads and the induced environment5 3 3.1 General input data5 Determination of loading conditions6 3.2 3.3 Safety factors8 3.4 Cases of design load9 Calculated safety margins9 3.5

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 14622:2000 https://standards.iteh.ai/catalog/standards/sist/0b1464d3-8ea2-43f8-a8c8-4e308e1daf32/iso-14622-2000

© ISO 2000 – All rights reserved

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 14622 was prepared by Technical Committee ISO/TC 20, *Aircraft and space vehicles*, Subcommittee SC 14, *Space systems and operations*.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 14622:2000 https://standards.iteh.ai/catalog/standards/sist/0b1464d3-8ea2-43f8-a8c8-4e308e1daf32/iso-14622-2000

Space systems — Structural design — Loads and induced environment

1 Scope

This International Standard defines the principles used to determine loads and the induced environment during the service life of a space flight vehicle and its components, taking account of the notions of probability, combined loads, corresponding safety factors and lifecycle.

2 Terms and definitions

For the purposes of this International Standard, the following terms and definitions apply.

2.1

space flight vehicle

combination of the launch system elements which leave the ground, i.e. the launch vehicle and the space vehicle(s) placed in orbit by the launch vehicle STANDARD PREVIEW

2.2 (standards.iteh.ai)

launch vehicle

one or more space flight vehicle stages capable of launching one or more space vehicles and placing them in orbit

space vehicle

https://standards.iteh.ai/catalog/standards/sist/0b1464d3-8ea2-43f8-a8c8-4e308e1daf32/iso-14622-2000

integrated group of subsystems and units capable of performing functions in space

NOTE Spacecraft is synonymous with space vehicle.

2.4

launch system

system including the space flight vehicle and corresponding installations, the ground equipment, hardware, software, procedures, services and personnel required for operations

2.5

load

response of a space flight vehicle to excitations encountered during its service life

2.5.1

static load

quasi-static load

load whose magnitude and direction are independent of time, or load which vary slowly and for which the dynamic response of the structure is not significant

NOTE This load can be induced by:

- steady winds;
- aerodynamic forces;
- thrust (constant or with slow variations);
- manoeuvres;
- spin stabilization.

2.5.2

transient load

load whose magnitude or direction varies with time and for which the dynamic response of the structure is significant

NOTE This load can be induced by:

- gusts;
- engine ignition or shutdown;
- separation;
- orbital docking;
- physical impact;
- deployment of appendages.

2.5.3

shock load

load applied in the form of shocks or percussion and for which the structure's dynamic response is significant

NOTE This load can be induced by:

- shockwave phenomena;
- pyrotechnic systems;
- physical impacts by deployed appendages;
- explosions.

iTeh STANDARD PREVIEW

2.5.4

(standards.iteh.ai)

oscillating load

load whose amplitude or direction varies within a frequency range for which the structure's dynamic response is significant

https://standards.iteh.ai/catalog/standards/sist/0b1464d3-8ea2-43f8-a8c8-

NOTE This load can be induced by: 4e30

4e308e1daf32/iso-14622-2000

- POGO effect;
- buffeting;
- vortex shedding due to ground wind;
- flutter;
- acoustic environment;
- rotation of parts;
- combustion instabilities in solid propellant stages.

2.5.5

limit load

maximum load that can be expected during the lifetime and in the presence of the environment

2.5.6

yield load

limit load multiplied by the yield safety factor $J_{\rm F}$ (2.10.1)

2.5.7

ultimate load

limit load multiplied by the ultimate safety factor J_R (2.10.2)

2.5.8

acceptance load

proof load

load applied during acceptance testing and which is equal to the limit load multiplied by an acceptance factor JP

2.5.9

qualification load

load applied during the qualification tests and which is borne by the structure without failure or collapse

2.5.10

failure load

load determined experimentally and for which the structure fails, collapses through instability or exhibits excessive deformation

2.6 Pressure

2.6.1

limit pressure

maximum pressure differential that can be expected in service and in the presence of the environment (see 3.2.4) and includes:

- the operating pressure (due either to propellant combustion or to pressurisation);
- transient pressure;
- hydrostatic pressure; iTeh STANDARD PREVIEW
- external pressure. (standards.iteh.ai)

2.6.2

ISO 14622:2000

yield pressure

https://standards.iteh.ai/catalog/standards/sist/0b1464d3-8ea2-43f8-a8c8-

limit pressure multiplied by the yield safety factor $J_{\rm E}$ (2.10.1)₄₆₂₂₋₂₀₀₀

2.6.3

ultimate pressure

limit pressure multiplied by the ultimate safety factor J_R (2.10.2)

2.6.4

proof pressure

differential pressure applied during the proof pressure test and which is equal to the limit pressure multiplied by the proof pressure factor J_P (2.5.8)

2.6.5

hydrostatic pressure

pressure at a level below the liquid level in the tank, which is induced by the height of liquid above this level, plus quasi-static accelerations

2.6.6

transient pressure

pressure that varies with time and for which the characteristic variation time is of the same order of magnitude as the structure's significant time constant

2.7 Thermal definitions

2.7.1

calculated thermal flux

heat flux evaluated in the most unfavourable heat exchange condition

NOTE See 3.2.5.

© ISO 2000 – All rights reserved

2.7.2

design temperature

temperature of the structure once subjected to the harshest combination of load, pressure and temperature

2.8 Material properties

2.8.1

Young's modulus

 \boldsymbol{F}

constant ratio between the stress and the resulting strain

NOTE The average value of the Young's modulus determined at the design temperature shall be taken into consideration.

2.8.2 Allowable stresses

2.8.2.1

 σ_{E}

uniaxial yield stress corresponding to 0,2 % residual strain (metallic materials only)

2.8.2.2

 σ_{R}

uniaxial ultimate strength stress

NOTE 1 σ_R and σ_E have a statistical definition: they are equal to a value which has a 90 % probability of being exceeded, with a 95 % confidence level for unmanned space vehicles. In the case of manned space vehicles and/or launch vehicles, the values are 99 % and 95 % respectively.

NOTE 2 σ_R and σ_F correspond to the condition of the material when the structure is in service at the design temperature.

2.9 <u>ISO 14622:2000</u>

strength

https://standards.iteh.ai/catalog/standards/sist/0b1464d3-8ea2-43f8-a8c8-

ability of the structures to withstand the loads (or pressures) and the environment encountered during their service lifetime

2.10

safety factor

coefficient by which the limit load (or pressure) is multiplied so as to account for any inaccuracies in the known statistical distribution of the load (or pressure) and strength value

NOTE These inaccuracies are due to:

- the limited number of observations or tests used to estimate these distributions;
- calculation inaccuracies.

EXAMPLE If F represents the estimated statistical distribution of loads (or pressures) and R the estimated statistical distribution of strengths and that, relative to these estimated distributions, F_1 is the limit load and R_1 the allowable strength (ultimate or yield strength), the corresponding safety factor is:

$$J = \frac{R_1}{F_1}$$

2.10.1

safety factor at yield strength

 J_{\vdash}

ratio between the load (or pressure) at the material yield strength and the limit load (or pressure)

NOTE This factor can only be applied to metal structures.

2.10.2

ultimate safety factor

 J_{E}

ratio between the allowable ultimate load (or pressure) and the limit load (or pressure)

NOTE A different approach can be used for defining a safety value when one has extensive experience of a given field of application. In this case, the authority will choose and set values for the safety factors.

2.11 Lifetime

2.11.1

envelope lifetime

lifetime of a structure determined on the basis of the structure having been subjected to the most unfavourable combination of events (load cycles, thermal cycles, etc.)

2.11.2

nominal lifetime

most probable lifetime determined by the authority on the basis of the envelope lifetime

2.11.3

design lifetime

lifetime used for designing structures, and in particular, for the damage tolerance studies

2.11.4

service lifetime

maximum period between the end of acceptance testing and the end of the structure's flight

(standards.iteh.ai)

3 Determination of loads and the induced environment

ISO 14622:2000

3.1 General input dataps://standards.iteh.ai/catalog/standards/sist/0b1464d3-8ea2-43f8-a8c8-4e308e1daf32/iso-14622-2000

3.1.1 System inputs

To determine the loads, a space system shall be defined by:

- design trajectory;
- geometry;
- inertial data (masses, centre of gravity, inertia, unbalance);
- aerodynamic characteristics (global, local, distributed);
- thermal and thermo-optical coefficients;
- stiffness values (global, local);
- modal characteristics;
- propulsion characteristics;
- functional data concerning the control subsystem, the separation and jettison subsystems and the subsystems for deployment of appendages and other on-board devices.

© ISO 2000 – All rights reserved