

INTERNATIONAL STANDARD

ISO
14953

First edition
2000-05-01

Space systems — Structural design — Determination of loading levels for static qualification testing of launch vehicles

Systèmes spatiaux — Conception des structures — Détermination des niveaux de chargement pour un essai statique de qualification des véhicules lanceurs

iteh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 14953:2000](#)

<https://standards.iteh.ai/catalog/standards/iso/6d42efcb-1d31-45f7-a499-0ec29e51659a/iso-14953-2000>

Reference number
ISO 14953:2000(E)

© ISO 2000

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 14953:2000](#)

<https://standards.iteh.ai/catalog/standards/iso/6d42efcb-1d31-45f7-a499-0ec29e51659a/iso-14953-2000>

© ISO 2000

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 734 10 79
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 14953 was prepared by Technical Committee ISO/TC 20, *Aircraft and space vehicles*, Subcommittee SC 14, *Space systems and operations*.

iTeh Standards
(<https://standards.iteh.ai>)
Document Preview

[ISO 14953:2000](#)

<https://standards.iteh.ai/catalog/standards/iso/6d42efcb-1d31-45f7-a499-0ec29e51659a/iso-14953-2000>

Space systems — Structural design — Determination of loading levels for static qualification of launch vehicles

1 Scope

This International Standard specifies a procedure for determining the loading level of a qualification test of a launch vehicle structure and takes into account all the minimum allowable strength characteristics necessary for these structures.

This International Standard establishes the required resistance necessary for all mass-produced items to comply with product assurance criteria.

2 Terms and definitions

For the purposes of this International Standard, the following terms and definitions apply.

2.1

external mechanical loading

system of forces and moments external to a structure and brought to bear on that structure

2.2

safety factor

J

coefficient by which a limit load is multiplied

[ISO 14953:2000](#)

<https://standards.iteh.ai/catalog/standards/iso/6d42efcb-1d31-45f7-a499-0ec29e51659a/iso-14953-2000>

2.2.1

yield strength safety factor

J_E

ratio of the yield load of the material to the limit load

NOTE This coefficient is applicable only to metal structures.

2.2.2

ultimate safety factor

J_R

ratio of the allowable ultimate load to the limit load

2.3

overload

excess of internal distributed load used for certain calculations to account for design

3 Design of loading levels

3.1 General

Qualification tests shall be conducted on a flight-type structure. Because such structures are unlikely to include minimum values for all allowable characteristics, the loads used for design shall be corrected before use in

qualification tests. All areas of the launch-vehicle flight structure shown to be critical in probable failure modes shall be considered for the following correction which shall be used to determine qualification test loading.

3.2 Calculation of qualification test loading

The corrected external loading, P_Q , (force, moment, pressure) used for qualification tests shall be calculated from the following equation:

$$P_Q = P_{\text{lim}} \times J_C$$

where

P_{lim} is the external loading limit corresponding to the of the highest stress combination of external loads likely to occur simultaneously while in service (value used for design);

J_C is the corrected safety factor (see 3.3).

3.3 Corrected safety factor

The corrected factor, J_C , is given by the following equation:

$$J_C = \frac{J \times K_{\min} \times K_{\text{adj}} + K_T}{K_\theta \times K_\sigma}$$

where:

J is the safety factor used for design (either for yield or for ultimate conditions);

K_{\min} is the correction factor for thickness (see 3.4.1);

K_{adj} is the correction factor for adjacent structures (see 3.4.2);

K_T is the correction factor for thermal gradients (see 3.4.3);

K_θ is the correction factor for temperature (see 3.4.4);

K_σ is the correction factor for the moduli (see 3.4.5).

3.4 Correction factors

3.4.1 Correction factor for thickness, K_{\min}

This factor takes into account the influence of the minimum thickness on the structure resistance; it is defined as the ratio of the thickness of the test specimen to the minimum allowable manufacturing thickness.

This correction factor is applicable only to metal structures. For other structures, use $K_{\min} = 1$.

3.4.2 Correction factor for adjacent structures, K_{adj}

3.4.2.1 Generally speaking during static qualification tests, the influence of adjacent structures should be simulated. In this case, take $K_{\text{adj}} = 1$.

3.4.2.2 When the influence of adjacent structures cannot be simulated correctly by the test facility, use a correction factor K_{adj} . The authority in charge of the structure shall deduce this factor by comparing results of two calculations made from the theoretical model.