

SLOVENSKI STANDARD SIST EN 777-4:2009

01-julij-2009

BUXca Yý U.

SIST EN 777-4:1999

SIST EN 777-4:1999/A1:2002 SIST EN 777-4:1999/A2:2002

SIST EN 777-4:1999/A3:2003

GłfcdbUW/j bUgYj UUn'j Y 'd`]bg_]a]'[cf]`b]_]'nUbYgłUbcj Ub'g_Y'dfcglcfY'!'("XY. G]gltYa '<'!'JUfbcgh

Multi-burner gas-fired overhead radiant tube heater systems for non-domestic use - Part 4: System H - Safety (standards.iteh.ai)

Gas-Systeme-Heizstrahler - Dunkelstrahlersysteme mit mehreren Brennern mit Gebläse für gewerbliche und industrielle Anwendung Teil 4. System H 4. Sicherheit b3b8017e1699/sist-en-777-4-2009

Tubes radiants suspendus a multi-bruleurs utilisant les combustibles gazeux a usage non-domestique - Partie 4 : Systeme H - Sécurité

Ta slovenski standard je istoveten z: EN 777-4:2009

ICS:

97.100.20 Plinski grelniki Gas heaters

SIST EN 777-4:2009 en,fr,de

SIST EN 777-4:2009

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>SIST EN 777-4:2009</u> https://standards.iteh.ai/catalog/standards/sist/91fc35a9-d2e7-4eff-8600-b3b8017e1699/sist-en-777-4-2009 EUROPEAN STANDARD NORME EUROPÉENNE

EUROPÄISCHE NORM

EN 777-4

March 2009

ICS 91.140.40

Supersedes EN 777-4:1999

English Version

Multi-burner gas-fired overhead radiant tube heater systems for non-domestic use - Part 4: System H - Safety

Tubes radiants suspendus à multi-brûleurs utilisant les combustibles gazeux à usage non-domestique - Partie 4 : Système H - Sécurité

Gasgeräte-Heizstrahler Dunkelstrahlersysteme mit mehreren Brennern mit Gebläse für gewerbliche und industrielle Anwendung - Teil 4: System H - Sicherheit

This European Standard was approved by CEN on 24 January 2009.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

SIST EN 777-4:2009

https://standards.iteh.ai/catalog/standards/sist/91fc35a9-d2e7-4eff-8600-b3b8017e1699/sist-en-777-4-2009

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

Contents		Page	
Foreword4			
1	Scope	5	
2	Normative references		
3 3.1 3.2 3.3 3.4	Terms and definitions	6 8 9	
3.5 3.6 3.7	Gases Conditions of operation and measurement Country of destination	13 14	
4 4.1 4.2 4.3	Classification of systems	15 15	
5 5.1 5.2 5.3 5.4 5.5 5.6	Constructional requirements General Requirements for adjusting, control and safety devices Ignition devices Main burners Pressure test points SIST.EM.777.4:2009 Injectors Injectors Injectors	22 26 27 27	
6 6.1 6.2 6.3 6.4 6.5 6.6 6.7	Operational requirements b3b8017e1699/sist-en-777-4-2009 Soundness	28 28 29 29 29 31	
7 7.1 7.2 7.3 7.4	Test methods General Construction and design Safety of operation Other pollutants	31 38 39	
8 8.1 8.2 8.3	Marking and instructions	56 60	
9 9.1 9.2 9.3	Evaluation of conformity of POCEDs and their associated terminals	64 64	
Annex A.1	A (informative) National situations	67	

A.3	Appliance supply pressures corresponding to the categories given in A.2	
A.4	Special categories marketed nationally or locally	71
A.5 A.6	Test gases corresponding to the special categories given in A.4	
A.6 A.7	Flue connections in the various countries	
	B (informative) System H	
	C (informative) Equivalence rules	
C.1	Conversion to categories within a restricted Wobbe Index range	
C.2	Conversion to categories within an identical Wobbe Index range	
C.3	Conversion to categories within a wider Wobbe Index range	
	D (informative) Calculation of the mass flow rate of flue gases	
D.1	Flue gas mass flow rate	
D.2	Quantity of air in the flue gas	
D.3	Flue gas excess air ratio (λ)	
D.4	Quantity of water vapour in the flue gas	
D.5	Quantity of Nitrogen in the flue gas	
D.6	Quantity of Oxygen in the flue gas	
D.7	Dry quantity of flue gas	
D.8	Quantity of carbon dioxide in the flue gas	84
Annex	E (informative) Identification of gas types in use in various countries	86
Annex	F (normative) Special national conditions	87
F.1	General	
Annex	G (informative) Example of calculation of the weighting factors for a system with	
	G (informative) Example of calculation of the weighting factors for a system with several rates	88
G.1	Appliance rates	88
G.2	Appliance rates	88
G.3	Weighting of $Q_{ni} = 40$	88
G.4	Weighting of $Q_{pi,\%} = 60$	88
G.5	Weighting of Qpi/%t=170 ds.iteh.ai/catalog/standards/sist/91fc35a9-d2e7-4eff-8600-	89
G.6	Total weighting	89
Annex	H (informative) Calculation of conversions of NO _x	90
H.1	NO _x emission conversion factors	
H.2	NO _x Conversion — Calculation	91
Annex	I (informative) National situations of countries whose national bodies are CEN	
HILLOX	associate members	93
_		
	J (informative) An example of sampling plans	
J.1	Sampling plansInspection levels and procedures	
J.2	·	
	K (informative) Flue determination	
K.1	General conditions of test	
K.2	Test conditions	
K.3	Test procedure	
K.4	Accuracy of measurement	
K.5	Calculation of Flue Loss	98
Annex	ZA (informative) Clauses of this European Standard addressing essential	
	requirements or other provisions of EU Directives	101
Anney	ZB (informative) Clauses of this European Standard addressing the provisions of	
, 1111 5 A	the EU Construction Products Directive	104
ZB.1	Scope and relevant characteristics	
ZB.2	Procedure(s) for attestation of conformity of [construction products]	
ZB.3	CE marking and labelling	
	raphy	
טווטוט	apily	111

Foreword

This document (EN 777-4:2009) has been prepared by Technical Committee CEN/TC 180 "Domestic and non-domestic gas fired air heaters and non-domestic gas fired overhead radiant heaters", the secretariat of which is held by AFNOR.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by September 2009, and conflicting national standards shall be withdrawn at the latest by September 2009.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document supersedes EN 777-4:1999.

This revision modifies EN 777-4:1999. It has been prepared to incorporate requirements for combustion products evacuation ducts, POCEDs, supplied as an integral part of the system to support the EU Directive 89/106/EEC on construction products under mandate M/105. To this end the systems within the scope of this standard are now defined as Type B_{52} rather than Type B_{22} .

Furthermore, the opportunity presented by this revision has been taken to update the standard in respect to EN 437:2003.

(standards.iteh.ai)

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of EC Directive(s).

https://standards.iteh.ai/catalog/standards/sist/91fc35a9-d2e7-4eff-8600-

For relationship with EC Directive(s); see informative: Annexes ZA and ZB, which are integral parts of this document.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

1 Scope

This European Standard specifies the requirements and test methods for the construction, safety, classification and marking of non-domestic gas-fired overhead radiant tube systems incorporating two or more burner units with each burner under the control of an automatic burner control system, and operated by a single fan providing a single flue outlet, called system H and referred to in the body of the text as the "system".

This standard is applicable to Type B_{52} systems (see 4.3) intended for use in other than domestic dwellings, in which the supply of combustion air and the evacuation of the products of combustion is achieved by mechanical means. This standard is applicable only to such systems that have fully premixed gas/air burners.

This standard is not applicable to:

- a) systems designed for use in domestic dwellings;
- b) outdoor systems;
- c) systems of heat input in excess of 120 kW (based on the net calorific value of the appropriate reference test gas);
- d) systems having a draught diverter;
- e) systems that are designed for continuous condensation within the flue system under normal operating conditions; (standards.iteh.ai)
- f) systems having combustion products evacuation ducts that are non-metallic.

This standard is applicable to systems which are intended to be type tested. It also includes requirements concerning the evaluation of conformity, including factory production control, but these requirements only apply to POCEDs and their associated terminals.

NOTE Requirements for systems which are not intended to be type tested would need to be subject to further consideration.

Requirements concerning the rational use of energy have not been included in this European Standard.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the editions cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 88-1:2007, Pressure regulators and associated safety devices for gas appliances - Part 1: Pressure regulators for inlet pressures up to and including 500 mbar

EN 126:2004, Multifunctional controls for gas burning appliances

EN 161:2007, Automatic shut-off valves for gas burners and gas appliances

EN 257, Mechanical thermostats for gas-burning appliances

EN 298:2003, Automatic gas burner control systems gas burners and gas burning appliances with or without fans

EN 437:2003, Test gases - Test pressures - Appliance categories

EN 10226-1:2004. Pipe threads where pressure tight joints are made on the threads – Part 1: Taper external threads and parallel internal threads - Dimensions, tolerances and designation

EN 10226-2:2005, Pipe threads where pressure tight joints are made on the threads – Part 2: Taper external threads and taper internal threads - Dimensions, tolerances and designation

EN 60335-1:2002, Household and similar electrical appliances - Safety - Part 1: General requirements

EN 60335-2-102:2006, Household and similar electrical appliances – Safety - Part 2-102: Particular requirements for gas, oil and solid-fuel burning having electrical connections

EN 60529:1992, Degrees of protection provided by enclosures (IP code)

EN 60584-1:1995, Thermocouples — Part 1: Reference tables

EN 60584-2:1993, Thermocouples — Part 2: Tolerances

EN ISO 228-1:2003. Pipe threads where pressure-tight joints are not made on the threads - Part 1: Dimensions, tolerances and designation (ISO 228-1:2000)

EN ISO 3166-1:2006, Codes for the representation of names of countries and their subdivisions -Part 1: Country codes (ISO 3166-1:2006)

IDARD PREVIEW

EN ISO 6976:2005, Natural gas - Calculation of calorific values, density, relative density and Wobbe index from composition (ISO 6976:1995 including Corrigendum 1:1997, Corrigendum 2:1997 and Corrigendum 3:1999)

ISO 7005-1:1992, Metallic flanges - Part 1: Steel flanges ist/91fc35a9-d2e7-4eff-8600-

ISO 7005-2:1988, Metallic flanges - Part 2: Cast iron flanges - 2009

ISO 7005-3:1988, Metallic flanges - Part 3: Copper flanges and composite flanges

CR 1404:1994, Determination of emissions from appliances burning gaseous fuels during type testing

3 Terms and definitions

For the purposes of this standard the following terms and definitions apply.

3.1 System and its constituent parts

overhead radiant tube heater

gas fired appliance intended for installation above head level which is designed to heat the space beneath by radiation by means of a tube or tubes, heated by the internal passage of combustion products

3.1.2

multi-burner systems

those radiant tube heater systems which employ two or more burner units with each unit incorporating independent flame monitoring.

NOTE The units may be located in one or more sections of tubing. One or more fans may be used to assist in the evacuation of products of combustion or the supply of combustion air

System H: system in which individual units without fans are connected to a common duct with a fan. One or more burner units are situated in each branch tube (see Annex B).

3.1.3

branch tube

for the purposes of this part, a tube in which one or more burner units is/are situated and which only contains the products of combustion generated by this, or these, burners

3.1.4

common duct

duct which receives products of combustion from two or more branch tubes for the purposes of evacuation to the outside

3.1.5

individual burner unit

unit comprising a main burner and, if appropriate, an ignition burner. In addition, such components which are necessary to ignite the burner(s), monitor the flame and control the gas supply to the burner(s) are included in the unit

3.1.6

inlet connection

part of the system intended to be connected to the gas supply

3.1.7

mechanical joint

means of ensuring the soundness of an assembly of several parts e.g. metal to metal joints, conical joints, toroidal sealing rings ("O" rings), flat joints without the use of liquids (e.g. pastes and tapes)

(standards.iteh.ai)

3.1.8

gas circuit

part of the burner unit that conveys or contains the gas between the burner unit gas inlet connection and https://standards.iteh.ai/catalog/standards/sist/91fc35a9-d2e7-4eff-8600the burner(s)

b3b8017e1699/sist-en-777-4-2009

3.1.9

restrictor

device with an orifice, which is placed in the gas circuit so as to create a pressure drop and thus reduce the gas pressure at the burner to a predetermined value for a given supply pressure and rate

3.1.10

gas rate adjuster

component allowing an authorised person to set the gas rate of the burner to a predetermined value according to the supply conditions

- NOTE 1 Adjustment can be progressive (screw adjuster) or in discrete steps (by changing restrictors).
- NOTE 2 The adjusting screw of an adjustable regulator is regarded as a gas rate adjuster.
- NOTE 3 The action of adjusting this device is called "adjusting the gas rate".
- NOTE 4 A factory sealed gas rate adjuster is considered to be non-existent.

3.1.11

setting an adjuster

immobilizing a gas rate adjuster by such means as e.g. a screw, after the gas rate has been adjusted by the manufacturer or installer

3.1.12

sealing an adjuster

term applied to any arrangement in respect of the adjuster such that any attempt to change the adjustment breaks the sealing device or sealing material and makes this interference apparent

NOTE 1 A factory sealed adjuster is considered to be non-existent.

NOTE 2 A regulator is considered to be non-existent if it has been factory sealed, i.e. by the system manufacturer in a position such that it is not operational in the range of the normal supply pressure corresponding to the system category.

3.1.13

putting an adjuster or a control out of service

adjuster or a control (e.g. of temperature or pressure) is said to be "put out of service" if it is put out of action and sealed in this position; the burner unit then functions as if this device has been removed

3.1.14

injector

component that admits the gas into a burner

3.1.15

main burner

burner that is intended to ensure the thermal function of the system and is generally called the burner

3.1.16

ignition device

means (e.g. flame, electrical ignition device or other device) used to ignite the gas at the ignition burner or at the main burner

(standards.iteh.ai)

NOTE This device can operate intermittently or permanently.

SIST EN 777-4:2009

3.1.17 https://standards.iteh.ai/catalog/standards/sist/91fc35a9-d2e7-4eff-8600-

ignition burner b3b8017e1699/sist-en-777-4-2009

burner whose flame is intended to ignite another burner

3.1.18

fully pre-mixed gas/air burner

pre-aerated burner system in which gas is mixed in a pre-determined and adjustable ratio with all of the air necessary for combustion

3.1.19

aeration orifice

device in a burner unit enabling a volume of combustion air to enter the burner or point of combustion consistent with the gas flow through the gas orifice and variable with downstream negative pressure

3.1.20

primary aeration adjuster

device enabling the primary air to be set at the desired value according to the supply conditions

3.1.21

system aeration adjuster

one or more devices enabling the air flow condition within a branch tube or common duct to be set to design values

3.2 Combustion circuit

3.2.1

combustion chamber

enclosure inside which combustion of the air-gas mixture takes place

3.2.2

flue outlet

part of a Type B system that connects with a flue to evacuate the products of combustion

3.2.3

draught diverter

device placed in the combustion products circuit to reduce the influence of flue-pull and that of downdraught on the burner performance and combustion

3.2.4

POCED

combustion products evacuation duct that is intended to be used only with a specific appliance/system; this duct being either supplied with the appliance/system or specified in the manufacturer's instructions

3.3 Adjusting, control and safety devices

3.3.1

automatic burner control system

system comprising at least a programming unit and all the elements of a flame detector device

NOTE The various functions of an automatic burner control system may be in one or more housings.

3.3.2

programming unit

device which reacts to signals from control and safety devices, gives control commands, controls the start-up sequence, supervises the burner operation and causes controlled shut-down, and if necessary safety shut-down and lock-out.

(standards.iteh.ai)

NOTE The programming unit follows à predetermined sequence of actions and always operates in conjunction with a flame detector device

SIST EN 777-4:2009 https://standards.iteh.ai/catalog/standards/sist/91fc35a9-d2e7-4eff-8600-

3.3.3 https://standards.nehra/catalog/standards/sis/91/03/39-

programme

sequence of control operations determined by the programming unit involving switching on, starting up, supervising and switching off the burner

3.3.4

flame detector

device by which the presence of a flame is detected and signalled

NOTE it can consist of a flame sensor, an amplifier and a relay for signal transmission. These parts, with the possible exception of the actual flame sensor, may be assembled in a single housing for use in conjunction with a programming unit

3.3.5

flame signal

signal given by the flame detector device, normally when the flame sensor senses a flame

3.3.6

flame simulation

condition which occurs when the flame signal indicates the presence of a flame when in reality no flame is present

3.3.7

pressure regulator¹

device which maintains the outlet pressure constant independent of the variations in inlet pressure within defined limits

3.3.8

adjustable pressure regulator

regulator provided with means for changing the outlet pressure setting

3.3.9

flame supervision device

device that, in response to a signal from the flame detector, keeps the gas supply open and shuts it off in the absence of the supervised flame

3.3.10

range-rating device

component on the burner unit intended to be used by the installer to adjust the heat input of the burner unit, within a range of heat inputs stated by the manufacturer, to suit the actual heat requirements of the installation

This adjustment may be progressive (e.g. by use of a screw adjuster) or in discrete steps (e.g. by changing restrictors).

3.3.11

zero regulator

device which maintains a specified downstream pressure between it and a gas orifice at zero pressure within fixed limits independent of variation within a given range of upstream pressure and negative pressure downstream of the gas orificet and ards.iteh.ai)

3.3.12

automatic vacuum regulator

SIST EN 777-4:2009

device which maintains a constant negative pressure at a specified position within the tube both at startup and at thermal equilibrium conditions 8017e1699/sist-en-77

3.3.13

automatic shut-off valve

device that automatically opens, closes or varies the gas rate on a signal from the control circuit and/or the safety circuit

3.4 System operation

3.4.1

heat input

Q

quantity of energy used in unit time corresponding to the volumetric or mass flow rates; the calorific value used being the net or gross calorific value

NOTE The heat input is expressed in kilowatts (kW) (EN 437:2003).

3.4.2

nominal heat input

the value of the heat input (kW) declared by the manufacturer

10

¹ The term "regulator" is used in this case and for a volume regulator.

3.4.3

volume flow rate (V)

V

volume of gas consumed by the appliance in unit time during continuous operation

NOTE The volume flow rate is expressed in cubic metres per hour (m³/h), litres per minute (l/min), cubic decimetres per hour (dm³/h) or cubic decimetres per second (dm³/s) (EN 437:2003).

3.4.4

mass flow rate

М

mass of gas consumed by the appliance in unit time during continuous operation

NOTE The mass flow rate is expressed in kilograms per hour (kg/h) or grams per hour (g/h) (EN 437:2003).

3.4.5

flame stability

characteristic of flames which remain on the burner ports or in the flame reception zone intended by the construction

3.4.6

flame lift

total or partial lifting of the base of the flame away from the burner port or the flame reception zone provided by the design; flame lift may cause the flame to blow out (i.e. extinction of the air-gas mixture)

3.4.7 light-back iTeh STANDARD PREVIEW

entry of a flame into the body of the burner (Standards.iteh.ai)

3 4 8

light-back at the injector

SIST EN 777-4:2009

ignition of the gas at the injector, reither as a result of light-back into the burner on by the propagation of a flame outside the burner b3b8017e1699/sist-en-777-4-2009

3.4.9

sooting

phenomenon appearing during incomplete combustion and characterized by deposits of soot on the surfaces or parts in contact with the combustion products or with the flame

3.4.10

yellow tipping

yellowing of the tip of the blue cone of an aerated flame

3.4.11

purge

forced introduction of air through the combustion chamber and flue passages in order to displace any remaining fuel/air mixture and/or products of combustion

3.4.11.1

pre-purge

purge which takes place between the start signal and the energising of the ignition device

3.4.11.2

post-purge

purge which takes place immediately following shut-down

3.4.12

first safety time²

interval between the ignition burner valve, the start gas valve or main gas valve, as applicable, being energized and the ignition burner valve, start gas valve or main gas valve, as applicable, being deenergized if the flame detector signals the absence of a flame at the end of this interval

3.4.13

second safety time

where there is a first safety time applicable to either an ignition burner or start gas flame only, the second safety time is the interval between the main gas valve being energized and the main gas valve being deenergized if the flame detector signals the absence of a flame at the end of this interval

3.4.14

extinction safety time

time which elapses between the moment when the supervised flame is extinguished and the moment when the automatic burner control system initiates shut-down of the burner by removing power to the automatic gas shut-off valves

3.4.15

start-gas flame

flame established at the start-gas rate either at the main burner or at a separate ignition burner

3.4.16

running condition of the system

condition in which the burner is in normal operation under the supervision of the programming unit and its flame detector device iTeh STANDARD PREVIEW

3.4.17

(standards.iteh.ai)

controlled shut-down

safety shut-down

process by which the power to the gas shut-off valve(s) is removed immediately, e.g. as a result of the action of a controlling function SIST EN 777-42009

https://standards.iteh.ai/catalog/standards/sist/91fc35a9-d2e7-4eff-8600-

3.4.18

b3b8017e1699/sist-en-777-4-2009

process which is effected immediately following the response of a safety control or sensor or the detection of a fault in the automatic burner control system and which puts the burner unit out of operation by immediately removing the power to the gas shut-off valve(s) and the ignition device

3.4.19

non-volatile lock-out

safety shut-down condition of the system, such that a restart can only be accomplished by a manual reset of the system and by no other means

3.4.20

volatile lock-out

safety shut-down condition of the system, such that a restart can only be accomplished by either the manual reset of the system, or a failure of the mains electrical supply and its subsequent restoration

3.4.21

spark restoration

process by which, following the loss of the flame signal, the ignition device will be switched on again without the total interruption of the gas supply

NOTE This process ends with the restoration of the running condition or if there is no flame signal at the end of the safety time, with volatile or non-volatile lock-out.

12

² Where there is no second safety time, this is called the safety time.

3.4.22

automatic recycling

process by which, after a safety shut-down, a full start-up sequence is automatically repeated

NOTE This process ends with the restoration of the running condition or, if there is no flame signal at the end of the safety time, or if the cause of the accidental interruption has not disappeared, with volatile or non-volatile lock-out.

3.5 Gases

3.5.1

calorific value

quantity of heat produced by the complete combustion, at a constant pressure equal to 1 013,25 mbar, of a unit volume or mass of gas, the constituents of the combustible mixture being taken at reference conditions and the products of combustion being brought back to the same conditions

A distinction is made between:

- a) the gross calorific value H_s in which the water produced by combustion is assumed to be condensed
- b) the net calorific value H_i in which the water produced by combustion is assumed to be in the vapour state

NOTE The calorific value is expressed either in MJ/m³ of dry gas at the reference conditions or in MJ/kg of dry gas (EN 437:2003). **Teh STANDARD PREVIEW**

3.5.2

(standards.iteh.ai)

relative density

d

ratio of the masses of equal volumes of dry gas and dry air at the same conditions of temperature and pressure https://standards.iteh.ai/catalog/standards/sist/91fc35a9-d2e7-4eff-8600-

b3b8017e1699/sist-en-777-4-2009

3.5.3

Wobbe index

gross Wobbe index: W_s and net Wobbe index: W_i .

ratio of the calorific value of a gas per unit volume and the square root of its relative density under the same reference conditions. The Wobbe index is said to be gross or net according to whether the calorific value used is the gross or net calorific value

NOTE The Wobbe index is expressed either in MJ/m³ of dry gas at the reference conditions or in MJ/kg of dry gas (EN 437:2003).

3.5.4

test pressure

gas pressures used to verify the operational characteristics of appliances using combustible gases; they consist of normal and limit pressures

NOTE Test pressures are expressed in mbar. 1 mbar = 10^2 Pa (EN 437:2003).

3.5.5

normal pressure

 p_n

pressure under which the appliances operate in nominal conditions when they are supplied with the corresponding reference gas

(EN 437:2003)