NORME INTERNATIONALE

ISO 10093

Deuxième édition 1998-11-15

Plastiques — Essais au feu — Sources d'allumage normalisées

Plastics — Fire tests — Standard ignition sources

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10093:1998 https://standards.iteh.ai/catalog/standards/sist/2721b31a-67e3-4717-ba78-fd19f0cad692/iso-10093-1998

ISO 10093:1998(F)

So	Sommaire Pag		
1	Domaine d'application	1	
2	Références normatives	1	
3	Définitions	2	
4	Processus d'allumage	4	
5	Caractéristiques des sources d'allumage		
6	Principes expérimentaux		
7	Sources d'allumage		
An	nexe A (informative) Mode opératoire de validation pour l'évaluation des flammes d'essai	20	
An	nexe B (informative) Bibliographie	23	

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10093:1998 https://standards.iteh.ai/catalog/standards/sist/2721b31a-67e3-4717-ba78-fd19f0cad692/iso-10093-1998

© ISO 1998

Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.

Organisation internationale de normalisation Case postale 56 • CH-1211 Genève 20 • Suisse Internet iso@iso.ch

Imprimé en Suisse

Avant-propos

L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec la Commission électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.

Les projets de Normes internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur publication comme Normes internationales requiert l'approbation de 75 % au moins des comités membres votants.

La Norme internationale ISO 10093 a été élaborée par le comité technique ISO/TC 61, *Plastiques*, sous-comité SC 4, *Comportement au feu*.

Cette deuxième édition annule et remplace la première édition (ISO 10093:1994), dont elle constitue une révision technique.

Cette édition diffère de celle de 1994 du fait que l'ensemble des méthodes qui n'avaient pas fait l'objet d'une Norme internationale ont été éliminées. Les sources qui ont été éliminées sont la source S/DF4, qui était basée sur le brûleur de l'ASTM E 84 et les sources S/C1 S/C2 et S/C3 concernant les petits bûchers de bois utilisés pour les essais dans les normes britanniques. Deux brûleurs supplémentaires S/DF5 et S/DF6 ont été introduits dans cette révision. Ils sont basés sur les sources d'allumage de la CEI 60332-3:1992 et de l'ISO 9705:1993. Les sources P/PF2 et P/PF3 de l'édition de 1994 ont été combinées en une seule source P/PF2 avec deux définitions d'alimentation en carburant correspondant au même brûleur st/2721b31a-67e3-4717-ba78-

fd19f0cad692/iso-10093-1998

Les annexes A et B de la présente Norme internationale sont données uniquement à titre d'information.

Introduction

Les incendies sont causés par une grande variété de sources d'allumage. L'analyse statistique des incendies a permis de déterminer les principales sources primaires et secondaires, en particulier en ce qui concerne les incendies dans les bâtiments. Les causes d'incendie les plus fréquentes se sont avérées être les suivantes:

- a) appareils de cuisson;
- b) appareils de chauffage des locaux;
- c) fils électriques, connections et embouts;
- d) autres appareils électriques (tels que les lave-linge, couvertures chauffantes, télévisions, chauffe-eau);
- e) cigarettes;
- f) allumettes et briquets à gaz;
- g) lampes à braser, chalumeaux et lampes à souder;
- h) combustion des ordures; iTeh STANDARD PREVIEW
- i) bougies. (standards.iteh.ai)

La liste ci-dessus couvre les principales sources d'allumage primaires pour les incendies accidentels. D'autres sources peuvent intervenir dans les incendies d'origine criminelle. Des études sur les causes d'incendie ont montré que les sources d'allumage primaires (par exemple, cigarettes incandescentes ou allumettes enflammées que l'on jette) peuvent mettre le feu à de vieux papiers qui agissent ensuite comme source d'allumage secondaire d'une plus grande intensité.

Lors de l'analyse et de l'évaluation des diverses sources d'allumage pour des applications impliquant des matériaux plastiques, il convient d'apporter des réponses aux questions suivantes à partir de statistiques détaillées sur les incendies:

- a) Quelle est l'importance des sources d'allumage individuelles dans les diverses situations de risque d'incendie?
- b) Quelle est la part attribuable aux sources d'allumage secondaires?
- c) Quelle attention convient-il de prêter aux sources d'allumage secondaires?
- d) Quelle est l'importance des différentes sources d'allumage lors des accidents mortels causés par le feu?

Les sources d'allumage de laboratoire décrites ci-après sont destinées à simuler les sources d'allumage réelles qui sont la cause des feux réels dans lesquels les plastiques sont impliqués. Les sources d'allumage de laboratoire sont préférées aux sources d'allumage réelles car elles conduisent à une meilleure répétabilité des valeurs dans un même laboratoire et à une meilleure reproductibilité entre les différents laboratoires.

Ces sources d'allumage de laboratoire peuvent être utilisées pour développer de nouveaux modes opératoires d'essai.

Plastiques — Essais au feu — Sources d'allumage normalisées

1 Domaine d'application

La présente Norme internationale décrit et classifie une gamme de sources d'allumage de laboratoire utilisées lors des essais au feu sur les plastiques et sur les produits composés principalement de plastiques. Ces sources varient en intensité et en surface d'application. Elles peuvent être utilisées pour simuler l'excès initial de chaleur auquel peuvent être exposés les plastiques dans certains scénarios de risque d'incendie réel.

2 Références normatives

Les normes suivantes contiennent des dispositions qui, par suite de la référence qui en est faite, constituent des dispositions valables pour la présente Norme internationale. Au moment de la publication, les éditions indiquées étaient en vigueur. Toute norme est sujette à révision et les parties prenantes des accords fondés sur la présente Norme internationale sont invitées à rechercher la possibilité d'appliquer les éditions les plus récentes des normes indiquées ci-après. Les membres de la CEI et de l'ISO possèdent le registre des Normes internationales en vigueur à un moment donné.

ISO 1337:1980, Cuivres corroyés (de teneur en **Eurre** minimale de 99,85 %) — Composition chimique et formes des produits corroyés. https://standards.iteh.ai/catalog/standards/sist/2721b31a-67e3-4717-ba78-

fd19f0cad692/iso-10093-1998

ISO 5657:1997, Essais de réaction au feu — Allumabilité des produits de bâtiment avec une source de chaleur rayonnante.

ISO 8191-1:1987, Ameublement — Évaluation de l'allumabilité des meubles rembourrés — Partie 1: Source d'allumage: cigarette en combustion.

ISO 8191-2:1988, Ameublement — Évaluation de l'allumabilité des meubles rembourrés — Partie 2: Source d'allumage: flamme simulant une allumette.

ISO 9705:1993, Essais au feu — Essai dans une pièce en vraie grandeur pour les produits de surface.

ISO 11925-2:1997, Essais de réaction au feu — Allumabilité des produits du bâtiment soumis à l'incidence directe de la flamme — Partie 2: Essai à l'aide d'une source à flamme unique.

CEI 60332-3:1992, Essais des câbles électriques soumis au feu.

CEI 60695-2-1/0:1994, Essais relatifs aux risques du feu — Partie 2: Méthodes d'essai — Section 1/Feuille 0: Méthodes d'essai au fil incandescent — Généralités.

CEI 60695-2-2:1991, Essais relatifs aux risques du feu — Partie 2: Méthodes d'essai — Section 2: Essai au brûleur-aiguille.

CEI 60695-2-4/1:1991, Essais relatifs aux risques du feu — Partie 2: Méthodes d'essai — Section 4/Feuille 1: Flamme d'essai à prémélange de 1 kW nominal et guide.

CEI 60695-2-4/2:1994¹⁾, Essais relatifs aux risques du feu — Partie 2: Méthodes d'essai — Section 4/Feuille 2: Flamme d'essai à prémélange de 500 W nominal et guide.

CEI 60695-2-20:1995, Essais relatifs aux risques du feu — Partie 2: Méthodes d'essai — Section 20: Essai d'allumabilité par une bobine de fil chauffant sur matériaux.

CEI 60695-11-4:— ²⁾, Essais relatifs aux risques du feu — Partie 11: Essais à la flamme — Section 4: Appareillage de 50 W nominal et méthodes d'essai de vérification.

ASTM D 5025:1994, Spécification normalisée pour un brûleur de laboratoire utilisé pour les essais de combustion à petite échelle des matières plastiques.

DIN 50051:1977, Essais de matériaux; Comportement au feu des matériaux; Brûleur.

3 Définitions

Pour les besoins de la présente Norme internationale, les définitions suivantes s'appliquent.

3.1

flamme persistante

persistance de flamme sur un matériau après retrait de la source d'allumage

3 2

durée de persistance de flamme

durée pendant laquelle un matériau continue à flamber, dans des conditions d'essai spécifiées, après retrait de la source d'allumage [appelée également durée de flamme(s) résiduelle(s)]

3.3

(standards.iteh.ai)

incandescence résiduelle

combustion avec incandescence d'un matériau persistant paprès la disparition des flammes ou, s'il n'y a pas de flammes, après retrait de la source d'allumage i/catalog/standards/sist/2721b31a-67e3-4717-ba78-

fd19f0cad692/iso-10093-1998

3.4

durée d'incandescence résiduelle

période pendant laquelle l'incandescence persiste sur un matériau, dans des conditions d'essai spécifiées, après retrait de la source d'allumage et/ou disparition des flammes

3.5

combustion

réaction exothermique d'un corps avec un comburant, généralement accompagnée d'une émission de flammes et/ou d'incandescence et/ou d'émission de fumée

3.6

facilité d'allumage

aptitude d'un matériau à être allumé dans des conditions d'essai spécifiées

3.7

surface exposée

surface du produit soumise aux conditions thermiques de l'essai

3.8

flamber

être l'objet d'une combustion en phase gazeuse avec émission de lumière

2

¹⁾ Les futures éditions de la présente norme sont supposées être publiées sous la désignation CEI 60695-11-3.

²⁾ À publier.

© ISO ISO 10093:1998(F)

3.9

particules enflammées

matière se détachant de l'éprouvette au cours de l'essai, tombant sous le bord inférieur initial de l'éprouvette et continuant à flamber en tombant

3.10

combustion incandescente

combustion d'un matériau, en phase solide, sans flamme mais avec émission de lumière émanant de la zone de combustion

3.11

allumabilité

mesure de la facilité avec laquelle une éprouvette peut être allumée sous l'influence d'une source extérieure de chaleur, dans des conditions d'essai spécifiées

3.12

allumer, trans

provoquer une combustion

3.13

prendre feu, intrans

s'allumer avec ou sans application d'une source externe de chaleur

3.14

allumage

action d'allumer

iTeh STANDARD PREVIEW

3.15

source d'allumage

(standards.iteh.ai)

source de chaleur utilisée pour allumer des matériaux ou des produits combustibles

ISO 10093:1998

température d'allumage https://standards.iteh.ai/catalog/standards/sist/2721b31a-67e3-4717-ba78-

température minimale d'un matériau à laquelle peut être obtenue une combustion soutenue dans des conditions d'essai spécifiées

3.17

éclairement énergétique

(en un point d'une surface) quotient du flux énergétique reçu par un élément infiniment petit de la surface contenant le point, par l'aire de cet élément

3.18

temps minimal d'allumage

durée minimale d'exposition d'un matériau à une source d'allumage pour obtenir une combustion soutenue, dans des conditions d'essai spécifiées

3.19

source d'allumage primaire

première source d'allumage appliquée

3.20

propagation de feu couvant

propagation d'un front de feu couvant après retrait de la source d'allumage

3.21

source d'allumage secondaire

source de chaleur activée à la suite d'un allumage provoqué par une source primaire

3.22

flamme persistante

après retrait de la source d'allumage, apparition d'une flamme à la surface d'un matériau qui persiste pendant au moins 10 s

3.23

flamme fugace

après retrait de la source d'allumage, apparition de flashs ou de flammes ne durant pas 10 s successives

4 Processus d'allumage

- **4.1** Lorsque les plastiques sont exposés à une source d'énergie thermique, des vapeurs inflammables peuvent être produites en surface. Dans des conditions adéquates (en particulier à des températures élevées), il peut se former une concentration critique de vapeurs inflammables et, donc, se produire un allumage spontané. Si la flamme constitue la seule source d'énergie présente, ou une source complémentaire, le processus d'allumage est facilité; ce mécanisme est parfois appelé allumage piloté.
- **4.2** Une éprouvette de plastique est considérée comme allumée si des flammes apparaissent à la surface du plastique ou s'il est évident qu'il y a combustion incandescente.
- **4.3** Après allumage, certains plastiques en combustion créent des dangers d'incendie supplémentaires par la formation de particules ou gouttes enflammées. Si ces particules tombent sur un matériau combustible, un allumage secondaire peut se produire et l'incendie s'étendre plus rapidement.
- **4.4** L'application localisée d'une source de chaleur sur certains plastiques provoque une combustion incandescente. Dans le cas de certaines mousses thermoplastiques et de mousses à base de matériaux thermodurcissables, l'application localisée d'une source de chaleur provoque un phénomène de propagation de feu couvant, qui conduit à la production d'un résidu carboné **0.5.1101.21**

ISO 10093:1998

5 Caractéristiques des sources d'allumage dards/sist/2721b31a-67e3-4717-ba78-

fd19f0cad692/iso-10093-1998

- **5.1** Les principales caractéristiques des sources d'allumage et leurs relations avec l'éprouvette peuvent être définies par les facteurs suivants:
- a) L'intensité de la source d'allumage. C'est une mesure de la charge thermique exercée sur l'éprouvette résultant des effets combinés de conduction, de convection et de rayonnement causés par la source d'allumage.
- b) L'aire d'incidence de la source d'allumage sur l'éprouvette.
- c) La durée d'exposition de l'éprouvette et le fait qu'il s'agisse d'une exposition continue ou intermittente.
- d) La présentation de la source d'allumage par rapport à l'éprouvette et le fait qu'elle la touche ou non.
- e) L'orientation de l'éprouvette par rapport à la source d'allumage.
- f) Les conditions de ventilation à proximité de la source d'allumage et de la surface exposée de l'éprouvette.
- **5.2** Les sources d'allumage décrites dans l'article 7 fournissent une plage d'intensités et de surfaces d'application devant être utilisée dans le cadre des essais au feu auxquels sont soumises les matières plastiques.
- NOTE Les facteurs c) à f) peuvent être déterminés une fois que les conditions spécifiques d'essai au feu ont été définies.

6 Principes expérimentaux

6.1 Deux types de sources d'allumage avec flamme ont été choisis

6.1.1 Source avec flamme de diffusion

Pour obtenir une source avec flamme de diffusion, on fait passer un gaz (généralement du propane, du méthane ou du butane) dans des tubes en acier inoxydable sans admission d'air en amont de la base de la flamme.

NOTE Ces flammes simulent bien les flammes naturelles mais elles sont souvent instables et ne sont pas faciles à diriger en cas de présentation de la source sous un angle donné par rapport à l'éprouvette.

6.1.2 Source avec flamme prémélangée

Pour obtenir une source avec flamme prémélangée, on utilise un brûleur à gaz (fonctionnant généralement au propane, au méthane ou au butane) doté d'orifices d'admission d'air ou d'un collecteur d'admission d'air.

NOTES

- 1 Les sources avec flamme prémélangée sont plus facilement dirigeables que les sources avec flamme de diffusion et mieux adaptées pour certains essais d'assurance qualité effectués en laboratoire.
- 2 La flamme des sources avec flamme prémélangée est généralement plus chaude que celle des sources avec flamme de diffusion.
- **6.2** Il est recommandé (obligatoire pour certaines méthodes d'essai) de toujours régler les brûleurs à gaz à des hauteurs de flammes et/ou débits de gaz précis. Il convient d'effectuer périodiquement des vérifications secondaires de la température de la flamme ou du flux thermique, cependant, il convient que les critères portant sur ces paramètres ne constituent pas l'élément essentiel de la méthode de laboratoire. Une fois le brûleur à gaz réglé pour un essai particulier (c'est-à-dire souvent suivant un angle aigu par rapport à l'éprouvette), il est souhaitable de le laisser dans cette même position pendant toute la série d'expériences. Pour satisfaire facilement cet objectif, il suffit à l'opérateur de maintenir un débit de gaz constant vers le brûleur.

ISO 10093:1998

- 6.3 Les brûleurs à gaz sont raccordés à l'alimentation de gaz par des conduits flexibles. L'équipement comprend une bouteille de gaz avec détendeur donnant une pression de sortie déterminée, une vanne «tout ou rien», une vanne de réglage précise et un débitmètre.
- **6.4** Des difficultés peuvent parfois survenir en ce qui concerne l'alimentation et le mesurage du butane ou du propane lorsque les bouteilles doivent être stockées dans un environnement plus froid que les conditions d'essai définies et/ou à une certaine distance de l'appareillage d'essai. Dans ces cas précis, il est important de prévoir une longueur suffisante de flexible dans l'environnement contrôlé (15 °C à 30 °C) pour que le gaz puisse s'équilibrer à la température requise avant de mesurer le débit.
- NOTE Pour faciliter l'obtention de cet équilibre, il est possible de faire passer le gaz (avant de mesurer le débit) dans un tube métallique immergé dans de l'eau maintenue à 25 °C.
- **6.5** Il importe d'apporter le plus grand soin au mesurage et au réglage du débit de gaz. Les débitmètres à lecture directe, même ceux ayant fait l'objet d'un étalonnage direct pour le gaz utilisé, doivent être vérifiés, lors de l'installation initiale et à intervalles réguliers pendant les essais, à l'aide d'une méthode permettant de mesurer avec précision le débit absolu du gaz au niveau du tube du brûleur.
- NOTE L'une des façons d'y parvenir consiste à raccorder le tube du brûleur au moyen d'une courte portion de tube (d'environ 7 mm de diamètre intérieur) à un débitmètre à bulle de savon. Le temps de passage du ménisque de la bulle de savon dans un tube de verre (par exemple une burette graduée) donne la mesure absolue du débit. Des vannes de contrôle précises, pouvant être préréglées à l'un des débits de gaz souhaités avec des dispositifs simples permettant de passer d'un débit à l'autre, se sont également avérées efficaces.

7 Sources d'allumage

7.1 Généralités

La classification des sources d'allumage pouvant être utilisées dans le cadre des essais effectués sur les plastiques est donnée dans le tableau 1. Pour chaque classe, on indique s'il s'agit d'une source simulant une source d'allumage primaire ou secondaire en utilisant le préfixe «P» pour primaire, et «S» pour secondaire.

Tableau 1 — Classification des sources d'allumage

Classe	Туре	Exemples
S _m	Feu couvant	Cigarette
E	Électricité	Fil surchauffé, arc
DF	Flamme de diffusion	Allumette, bougie
PF	Flamme prémélangée	Brûleur de laboratoire, lampe à braser
R	Rayonnant sans contact	Radiateur électrique, chaleur rayonnante d'un incendie accidentel naissant ou établi

NOTES

- 1 Lorsqu'une valeur correspondant au flux thermique est associée à l'une des sources suivantes, il représente le flux thermique mesuré au point de la surface en contact avec la flamme.
- 2 Lorsqu'une surface de contact est associée à l'une des sources suivantes, elle représente la surface couverte par la flamme lorsque le bord le plus proche de l'orifice du brûleur se situe à 5 mm d'une surface verticale plane.

7.2 Source d'allumage P/S_m1

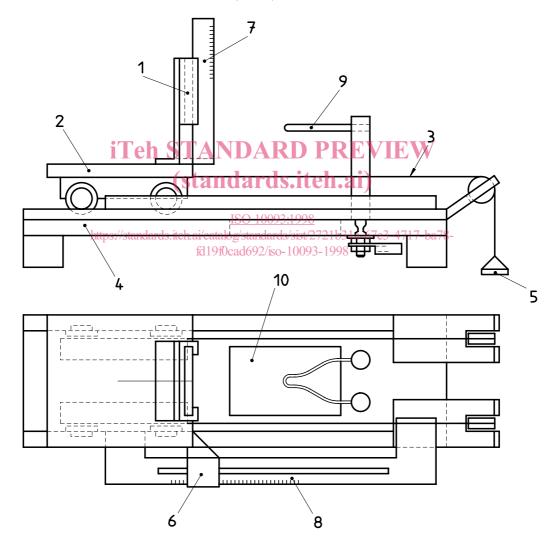
ISO 10093:1998

https://standards.iteh.ai/catalog/standards/sist/2721b31a-67e3-4717-ba78-

7.2.1 Cette source représente l'exemple type de la cigarette commune qui est connue pour être la cause d'un grand nombre d'incendies impliquant des meubles rembourrés et la literie, telle que décrite dans l'ISO 8191-1. La cigarette (sans filtre) non écrasée doit être conforme aux exigences suivantes:

longueur 70 mm \pm 4 mm diamètre 8,0 mm \pm 0,5 mm masse 1,0 g \pm 0,1 g

vitesse de feu couvant 12,0 min/50 mm \pm 3,0 min/50 mm


- **7.2.2** La vitesse de feu couvant est contrôlée sur un échantillon prélevé sur chaque lot de 10 cigarettes et utilisé comme suit:
- a) conditionner la cigarette avant l'essai pendant 72 h dans les conditions ambiantes de la salle d'essai et pendant au moins 16 h dans une atmosphère caractérisée par une température de 20 °C ± 5 °C et une humidité relative de (50 ± 20) %;
- b) apposer un marquage sur la cigarette à 5 mm et à 55 mm de l'extrémité à allumer;
- c) allumer la cigarette et aspirer l'air jusqu'à ce que la pointe devienne nettement incandescente; lors de cette opération, il ne faut pas que la cigarette se consume sur plus de 3 mm;
- d) dans une atmosphère exempte de courant d'air, embrocher la cigarette sur une tige horizontale en fil métallique pénétrant dans l'extrémité non allumée de la cigarette sur une longueur ne dépassant pas 13 mm;
- e) noter le temps nécessaire pour que le feu couvant parcourt la distance qui sépare les marques situées à 5 mm et 55 mm.

7.3 Source d'allumage P/E1

7.3.1 Cette source d'allumage référencée dans la CEI 60695-2-1/0 est appelée «fil incandescent». Elle simule la surchauffe de fils électriques, utilisés en particulier dans les équipements électrotechniques, en chauffant le fil incandescent jusqu'à l'une des températures d'essai suivantes:

550 °C \pm 10 °C 650 °C \pm 10 °C 750 °C \pm 10 °C 850 °C \pm 15 °C 960 °C \pm 15 °C

7.3.2 Le fil incandescent et la source d'allumage sont représentés à la figure 1. Le fil incandescent proprement dit est constitué d'une boucle de fil de nickel/chrome (80/20) de 4 mm de diamètre nominal.

Légende

- 1 Support de l'éprouvette
- 2 Chariot
- 3 Câble de tension
- 4 Bâti
- 5 Poids

- 6 Butée
- 7 Échelle de mesure de la hauteur de la flamme
- 8 Échelle de mesure de la pénétration
- 9 Fil incandescent
- 10 Découpe dans le bâti pour les particules tombant de l'éprouvette

Figure 1 — Source d'allumage P/E1