Plain bearings - Quality control techniques and inspection of geometrical and material quality characteristics

TECHNICAL CORRIGENDUM 1

Paliers lisses - Techniques de contrôle de la qualité et vérifications des caractéristiques de qualité géométriques et des matériaux

RECTIFICATIF TECHNIQUE 1

Technical corrigendum 1 to International Standard ISO 12301:1992 was prepared by Technical Committee ISO/TC 123, Plain bearings, Subcommittee SC 5, Quality analysis and assurance.

ISO 12301:1992/Cor 1:1995
https://standards.iteh.ai/catalog/standards/sist/e29eflab-0959-4393-ac36-f2e481c4fb65/iso-12301-1992-cor-1-1995
Page 3
Table 1 (concluded)
$\varepsilon_{\text {max }}$ is now: Maximum diametral deformation in compression
$\varepsilon_{\text {min }}$ is now: Minimum diametral deformation in compression

Page 31

A.1.5

Should read as follows:

A.1.5 Crush height, a

According to the drawing specification, $a=0,040 \mathrm{~mm}$ to $0,070 \mathrm{~mm}\left(a_{\min }=0,040 \mathrm{~mm} ; a_{\max }=0,070 \mathrm{~mm}\right)$.
Tolerance on crush height, $T_{a}=0,030 \mathrm{~mm}$.

ISO 12301:1992/Cor.1:1995(E)

A.1.6

Should read as follows:

A.1.6 Diametral deformation in compression, ε

NOTE - If the diameter of the checking block bore is larger than the upper limit of the housing diameter, ε is increased by that difference.

The minimum diametral deformation in compression, $\varepsilon_{\text {minin }}$, is calculated using the following formula:

$$
\varepsilon_{\min }=\frac{2}{\pi}\left(E_{\mathrm{red}}+a_{\min }\right)=\frac{2}{\pi}(0,039+0,040)=0,050 \mathrm{~mm}
$$

The maximum diametral deformation in compression, $\varepsilon_{\text {max }}$, is calculated using the following formula:

$$
\varepsilon_{\max }=\frac{2}{\pi} \times T_{a}+\left(T_{d \mathrm{H}}+\varepsilon_{\min }\right)=\frac{2}{\pi} \times 0,030+(0,019+0,050)=0,088 \mathrm{~mm}
$$

where $T_{d \mathrm{H}}$ is the tolerance on the housing diameter d_{H}.

A.1.7

Should read as follows:

A.1.7 Tangential load, $F_{\text {tan }}$

$$
\frac{s_{\text {tot, eff }}}{d_{\mathrm{H}}}=\frac{1,75}{64}=0,027
$$

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12301:1992/Cor 1:1995
https://standards.iteh.ai/catalog/standards/sist/e29efl ab-0959-4393-ac36-f2e481c4fb65/iso-12301-1992-cor-1-1995
(See figure A.1.)
The stress, Φ, is derived from figure A.1.

$$
\Phi=1,93 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}
$$

Using this value derived for Φ, the minimum and maximum tangential strengths can be calculated as follows:

$$
\begin{aligned}
& \sigma_{\tan , \min }=\frac{\Phi}{d_{\mathrm{H}}} \times \varepsilon_{\min }=\frac{1,93 \times 10^{5}}{64} \times 0,050=151 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{tan}, \max }=\frac{\Phi}{d_{\mathrm{H}}} \times \varepsilon_{\max }=\frac{1,93 \times 10^{5}}{64} \times 0,088=265 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Thus the median tangential load, $\bar{F}_{\text {tan }}$, to be applied in this example can be calculated as follows:

$$
\bar{F}_{\text {tan }}=\frac{\sigma_{\text {tan, } \min }+\sigma_{\text {tan, max }}}{2} \times A_{\text {eff }}=\frac{151+265}{2} \times 43,75=9100 \mathrm{~N}
$$

Page 33

A.2.5

Should read as follows:

A.2.5 Crush height, a

According to the drawing specification, $a=0,050 \mathrm{~mm}$ to $0,080 \mathrm{~mm}\left(a_{\text {min }}=0,050 \mathrm{~mm} ; a_{\text {max }}=0,080 \mathrm{~mm}\right)$.
Tolerance on crush height, $T_{a}=0,030 \mathrm{~mm}$.

A.2.6

Should read as follows:

A.2.6 Diametral deformation in compression, ε

NOTE - If the diameter of the checking block bore is larger than the upper limit of the housing diameter, ε is increased by that difference.
The minimum diametral deformation in compression, $\varepsilon_{\text {min }}$, is calculated using the following formula:

$$
\varepsilon_{\min }=\frac{2}{\pi}\left(E_{\mathrm{red}}+a_{\min }\right)=\frac{2}{\pi}(0,065+0,050)=0,073 \mathrm{~mm}
$$

The maximum diametral deformation in compression, $\varepsilon_{\text {max }}$, is calculated using the following formula:

$$
\left.\varepsilon_{\max }=\frac{2}{\pi} \times T_{a}+\left(T_{d \mathrm{H}}+\varepsilon_{\min }\right)=\frac{2}{\pi} \times 0,030+(0,022+0,073)=0,114 \mathrm{~mm} . \text {.i. }\right)
$$

where $T_{d \mathrm{H}}$ is the tolerance on the housing diameter d_{H}.

ISO 12301:1992/Cor 1:1995

A.2.7
https://standards.iteh.ai/catalog/standards/sist/e29eflab-0959-4393-ac36-f2e481c4fb65/iso-12301-1992-cor-1-1995

Should read as follows:

A.2.7 Tangential load, $F_{\tan }$

$$
\frac{s_{\text {tot, eff }}}{d_{\mathrm{H}}}=\frac{5,56}{110}=0,05
$$

(See figure A.1.)
The stress, Φ, is derived from figure A.1.

$$
\Phi=1,75 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}
$$

Using this derived value for Φ, the minimum and maximum tangential strengths can be calculated as follows:

$$
\begin{aligned}
& \sigma_{\tan , \min }=\frac{\Phi}{d_{\mathrm{H}}} \times \varepsilon_{\min }=\frac{1,75 \times 10^{5}}{110} \times 0,073=116 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\tan , \max }=\frac{\Phi}{d_{\mathrm{H}}} \times \varepsilon_{\max }=\frac{1,75 \times 10^{5}}{110} \times 0,114=181 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Thus the median tangential load, $\bar{F}_{\text {tan }}$, to be applied in this example can be calculated as follows:

$$
\bar{F}_{\mathrm{tan}}=\frac{\sigma_{\mathrm{tan}, \min }+\sigma_{\mathrm{tan}, \max }}{2} \times A_{\mathrm{eff}}=\frac{116+181}{2} \times 183,4=27235 \mathrm{~N}
$$

iTeh STANDARD PREVIEW
 This pagsi iteantionally.letet plaakii)

ISO 12301:1992/Cor 1:1995
https://standards.iteh.ai/catalog/standards/sist/e29efl ab-0959-4393-ac36-f2e481c4fb65/iso-12301-1992-cor-1-1995

