Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and nongovernmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.

International Standard ISO 2811-4 was prepared by Technical Committee ISO/TC 35, Paints and varnishes, Subcommittee SC 9, General 'test methods for paints and varnishes.

ISO 2811-4:1997

Together with the other parts;pthis part ofitiSO $281 d g$ cancels/and replaces $606 \mathrm{c}-4 \mathrm{~d} 44$-aba3ISO 2811:1974, which has been technically revised:f79de1/iso-2811-4-1997

ISO 2811 consists of the following parts, under the general title Paints and varnishes - Determination of density:

- Part 1: Pyknometer method
- Part 2: Immersed body (plummet) method
- Part 3: Oscillation method
- Part 4: Pressure cup method

Annex A forms an integral part of this part of ISO 2811. Annex B is for information only.

[^0]
4 Principle

The product under test is compressed in a cylindrical pressure cup to reduce any error due to air bubbles which have not been eliminated. The density is calculated from the mass of the product and the volume of the cylinder.

NOTE - Air is more soluble at higher pressures, and it is thought that the main mechanism of bubble removal is by dissolving. Any undissolved bubbles are compressed to a fraction of their original size.

5 Temperature

The effect of temperature on density is highly significant with respect to filling properties, and varies with the type of product.

For international reference purposes, it is essential to standardize one test temperature, and $(23 \pm 0,5)^{\circ} \mathrm{C}$ is specified in this part of ISO 2811. However, it may be more convenient to carry out comparative testing at some other agreed temperature, for example $(20 \pm 0,5)^{\circ} \mathrm{C}$ as specified by relevant weights and measures legislation (see also annex B, clause B.2).

The test sample and pressure cup shall be conditioned to the specified or agreed temperature, and it shall be ensured that the temperature variation does not exceed $0,5^{\circ} \mathrm{C}$ during testing.

6 Apparatus

Ordinary laboratory apparatus and glassware, together with the following. V NTW
6.1 Pressure cup, comprising a hollow cylinder closed by acrew-driven piston at its lower end and by a pressure-release cap at the top (see figure 1). A calibration collar on the screw is set to stop further movement of the piston when the volume contained in the cylinderis 100 ml . 9 The pressure-release cap is designed to let liquid escape when the pressure in the cylinder tises above ($1 d \pm 0,1) \mathrm{MPa}(100$ bar $)$ c-The apparatus is made of a strong, inert material, for example stainless steel, anditisceasily dismantled for cleaning.
6.2 Thermometer, accurate to $0,2^{\circ} \mathrm{C}$ and graduated at intervals of $0,2^{\circ} \mathrm{C}$ or finer.
6.3 Temperature-controlled chamber, capable of maintaining the pressure cup and sample at the specified or agreed temperature (see clause 5).
6.4 Balance, accurate to 10 mg .

7 Sample

Take a representative sample of the product to be tested, as described in ISO 1512. Examine and prepare the sample as described in ISO 1513.

8 Procedure

8.1 General

Carry out the determination in duplicate, each time on a fresh test sample.

8.2 Determination

Weigh the apparatus dismantled, ensure that it is clean and has a trace of grease on the moving parts. Fit the piston in its lowest position in the cylinder.

Weigh the complete apparatus to the nearest $10 \mathrm{mg}\left(m_{1}\right)$. Bring the apparatus and the test sample to the specified or agreed temperature by placing it next to the balance for at least 30 min .

Pour the test sample into the cylinder until it is almost full, and allow sufficient time for the test sample and the cylinder to come to equilibrium at the test temperature. Confirm that the temperature is correct using the thermometer (6.2). Secure the pressure-release cap in position, in accordance with the manufacturer's instructions.

Key

1) Pressure-setting handle
2) Pressure-release device
3) End cap
4) End seal
5) Cylinder (closed volume 100 ml)
6) Piston seal
7) Piston
8) Calibration-collar stop
9) Pressure-application handle

Figure 1 - Pressure cup

Compress the test sample by turning the screw. As the pressure reaches 1 MPa , excess paint is forced out between the cylinder and the cap. Continue turning the screw until the calibration collar stops further movement.

NOTE - A rag held around the top of the cylinder will reduce the mess. It is essential that some excess paint is forced out, to confirm that full pressure is achieved.

Clean and dry the outside of the filled cup, and weigh it to the nearest $10 \mathrm{mg}\left(m_{2}\right)$.
Unscrew the piston enough to reduce the pressure. Dismantle, empty and clean the apparatus.
For reference tests, and periodically during routine tests, check the calibration of the apparatus, using pure water as the test liquid (see annex A).

9 Calculation

Calculate the density ρ of the product, in grams per millilitre, at the test temperature t_{\top} using the following equation:

$$
\rho=\frac{m_{2}-m_{1}}{V_{t}}
$$

where
m_{1} is the mass, in grams, of the empty pressure cup;
m_{2} is the mass, in grams, of the pressure cup filled with the product at the test temperature t_{\top};
V_{t} is the volume, in millilitres, of the pressure cup at the test temperature ψ_{τ}, determined in accordance with annex A .

NOTE - The result is not corrected for air buoyancy because the uncorrected value is required by most filling-machine control procedures and the correction $(0,0012 \mathrm{~g} / \mathrm{ml})$ is negligible in relation to the precision of the method.

ISO 2811-4:1997
https://standards.iteh.ai/catalog/standards/sist/195106d5-606c-4d44-aba3-

10 Precision

10.1 Repeatability (r)

The value below which the absolute difference between two single test results, each the mean of duplicates, obtained on identical material by one operator in one laboratory within a short interval of time using the standardized test method may be expected to lie with a 95% probability is $0,005 \mathrm{~g} / \mathrm{ml}$.

10.2 Reproducibility (R)

No data is currently available.

11 Test report

The test report shall include at least the following information:
a) all details necessary to identify the product tested;
b) a reference to this part of ISO 2811 (i.e. ISO 2811-4);
c) the supplier and serial number or other identification of the pressure cup;
d) the test temperature;
e) the results of each density measurement and the mean, rounded to the nearest $0,01 \mathrm{~g} / \mathrm{ml}$;
f) any deviation from the test method specified;
g) the date of the test.

Annex A (normative)

Calibration of the pressure cup

A. 1 Procedure

Put the pressure cup in a container next to the balance in order for it to reach room temperature (approximately $30 \mathrm{~min})$. Then weigh using the balance and record this mass $\left(m_{1}\right)$.

Almost fill the pressure cup with previously boiled distilled or deionized water of grade 2 purity as defined in ISO 3696, which has been brought to a temperature of not more than $1^{\circ} \mathrm{C}$ below the test temperature. Secure the pressure-release cap in position, in accordance with the manufacuter's instructions.

Place the pressure cup in the temperature-controlled chamber and wait until the test temperature is reached then compress the water by turning the screw. Continue until the calibration collar stops further movement, and wipe off any excess water with an absorbent material (cloth or paper), leaving the pressure cup exactly filled. Take the pressure cup out of the chamber and dry it thoroughly on the outside. Avoid additional heating up. Weigh the filled pressure cup immediately $\left(m_{3}\right)$.

NOTE - Handle the pressure cup as little as possible to minimize temperature increases.

A. 2 Calculation of the volume of the pressure cup RIEVIIEW

Calculate the volume V_{t}, in millilitres, of the pressure cup at temperature t_{\top} using the following equation:

$$
V_{t}=\frac{m_{3}-m_{1}}{\rho_{\mathrm{W}}}
$$

ISO 2811-4:1997
https $\mathrm{s} /$ /standards.iteh.ai/catalog/standards/sist/195106d5-606c-4d44-aba3-602767f79del/iso-2811-4-1997
where
m_{1} is the mass, in grams, of the empty pressure cup;
m_{3} is the mass, in grams, of the pressure cup filled with distilled water at the test temperature t_{\top};
ρ_{W} is the density, in grams per millilitre, of pure water at the test temperature t_{\top} (see table A.1).

Table A. 1 - Density of pure, air-free water

Temperature t_{T} ${ }^{\circ} \mathrm{C}$	Density $\begin{gathered} \rho_{\mathrm{w}} \\ \mathrm{~g} / \mathrm{ml} \end{gathered}$	Temperature t_{T} ${ }^{\circ} \mathrm{C}$	Density ρ_{w} g / ml	Temperature t_{T} ${ }^{\circ} \mathrm{C}$	Density $\begin{gathered} \rho_{\mathrm{w}} \\ \mathrm{~g} / \mathrm{ml} \end{gathered}$
10	0,999 7	22	0,997 8	25	0,997 0
11	0,999 6				
12	0,999 5	22,1	0,997 8	25,1	0,9970
13	0,999 4	22,2	0,997 7	25,2	0,9970
14	0,999 2	22,3	0,997 7	25,3	0,9970
15	0,999 1	22,4	0,997 7	25,4	0,996 9
16	0,998 9	22,5	0,997 7	25,5	0,996 9
17	0,998 8	22,6	0,9976	25,6	0,996 9
18	0,998 6	22,7	0,9976	25,7	0,996 9
19	0,998 4	22,8	0,9976	25,8	0,996 8
		22,9	0,9976	25,9	0,996 8
20	0,998 2	23	0,9975	26	0,996 8
				27	0,996 5
20,1	0,9982 eh	ST $23,1 \mathrm{D}$	R 0,9975	H ${ }^{28}$	0,996 2
20,2	0,998 2	($\mathrm{st}^{23,2}$,	-0,9975	29	0,995 9
20,3	0,998 1	23,3	- 0,9975	30	0,995 7
20,4	0,998 1	23,4 ${ }_{\text {SO }} 28$	11-4:19,9974	31	0,995 3
20,5	0,998/tandar	ds.iteh.ai/23,5g/stand	ards/si0,997 46d5-6	p6c-4d32aba3-	0,995 0
20,6	0,998 1	6023,6 ${ }^{\text {f79 de } 1}$	iso-280,997 ${ }^{\text {47 }}$	33	0,994 7
20,7	0,998 1	23,7	0,997 4	34	0,994 4
20,8	0,998 0	23,8	0,997 3	35	0,994 0
20,9	0,998 0	23,9	0,9973		
21	0,998 0	24	0,997 3	36	0,993 7
				37	0,993 3
21,1	0,998 0	24,1	0,997 3	38	0,993 0
21,2	0,998 0	24,2	0,9972	39	0,992 6
21,3	0,997 9	24,3	0,9972	40	0,992 2
21,4	0,9979	24,4	0,9972		
21,5	0,9979	24,5	0,9972		
21,6	0,9979	24,6	0,997 1		
21,7	0,997 8	24,7	0,9971		
21,8	0,997 8	24,8	0,9971		
21,9	0,997 8	24,9	0,997 1		

Annex B (informative)

Temperature variation

B. 1 Correction for thermal expansion of the pressure cup

If the test temperature t_{\top} differs by more than $5^{\circ} \mathrm{C}$ from the temperature at which the volume of the pressure cup is known, then the density should be preferably be corrected for the change in volume of the pressure cup.

Calculate, to five significant figures, the volume V_{t}, in millilitres, of the pressure cup at the test temperature using the following equation:

$$
V_{t}=V_{\mathrm{C}}\left[1+\gamma_{\mathrm{P}}\left(t_{\mathrm{T}}-t_{\mathrm{C}}\right)\right]
$$

where
V_{C} is the volume, in millilitres, of the pressure cup at the calibration $t_{C} ; 1 W$
$t_{\mathrm{T}} \quad$ is the test temperature, in degreescelsiusards.iteh.ai)
t_{C} is the calibration temperature, in degrees Celsius;,4:1997
https://standards.iteh.ai/catalog/standards/sist/195106d5-606c-4d44-aba3-
γ_{P} is the volume coefficient of thermal expansion, in reciprocal degrees Celsius $\left({ }^{\circ} \mathrm{C}^{-1}\right)$, of the material from which the pressure cup is made (see table B.1).

Table B. 1 - Coefficient of thermal expansion γ_{P} of material used for pressure cups

Material	γ_{P}
	${ }^{\circ} \mathrm{C}^{-1}$

[^0]: © ISO 1997
 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

 International Organization for Standardization
 Case postale 56 • CH-1211 Genève 20 • Switzerland
 Internet central@iso.ch
 X. $400 \quad c=c h ; a=400$ net; $p=i s o ; ~ o=i s o c s ; ~ s=c e n t r a l$

 Printed in Switzerland

