
B C Reference number
ISO/IEC 14750:1999(E)

INTERNATIONAL
STANDARD

ISO/IEC
14750

First edition
1999-03-15

Information technology — Open Distributed
Processing — Interface Definition
Language

Technologies de l'information — Traitement distribué ouvert — Langage de
définition d'interface

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 14750:1999
https://standards.iteh.ai/catalog/standards/sist/e3ac697b-4bd2-406c-aba7-

fb783771701d/iso-iec-14750-1999

ISO/IEC 14750 : 1999 (E)

© ISO/IEC 1999

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office • Case postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

ii

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 14750:1999
https://standards.iteh.ai/catalog/standards/sist/e3ac697b-4bd2-406c-aba7-

fb783771701d/iso-iec-14750-1999

iii

Contents

Page

1 Scope .. 1

2 Normative references.. 1
2.1 Identical Recommendations | International Standards... 1

3 Definitions .. 1

4 ODP IDL syntax and semantics.. 1
4.1 Lexical conventions... 2
4.2 Preprocessing .. 7
4.3 ODP IDL grammar.. 8
4.4 ODP IDL specification.. 12
4.5 Inheritance... 13
4.6 Constant declaration .. 15
4.7 Type declaration .. 17
4.8 Typecodes and Principals .. 22
4.9 Exception declaration .. 22
4.10 Operation declaration .. 23
4.11 Attribute declaration.. 25
4.12 CORBA module .. 25
4.13 Names and scoping.. 25
4.14 Differences from C++ ... 27

Annex A – Reserved standard exceptions ... 28
A.1 Object Non-Existence ... 29
A.2 Transaction exceptions.. 29

Annex B – Typecode encoding in the CORBA specification.. 30

© ISO/IEC ISO/IEC 14750 : 1999 (E)

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 14750:1999
https://standards.iteh.ai/catalog/standards/sist/e3ac697b-4bd2-406c-aba7-

fb783771701d/iso-iec-14750-1999

ISO/IEC 14750 : 199 (E) © ISO/IEC

iv

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the
specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the
development of International Standards through technical committees established by the respective organization to deal with
particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft
International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the national bodies casting a vote.

International Standard ISO/IEC 14750 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 33, Distributed application services, in collaboration with ITU-T. The identical text is published as ITU-T
Recommendation X.920.

Annex A forms a normative part of this International Standard. Annex B is for information only.
iTeh STANDARD PREVIEW

(standards.iteh.ai)
ISO/IEC 14750:1999

https://standards.iteh.ai/catalog/standards/sist/e3ac697b-4bd2-406c-aba7-
fb783771701d/iso-iec-14750-1999

v

Introduction

The rapid growth of distributed processing has led to a need for a coordinating framework for the standardization of
Open Distributed Processing (ODP). The Reference Model of Open Distributed Processing (RM-ODP) provides such a
framework. It defines an architecture within which support of distribution, interoperability and portability can be
integrated.

One of the components of the architecture (described in RM-ODP Part 3: Architecture) (see ITU-T Rec. X.903 |
ISO/IEC 10746-3) is a language that is suitable for describing the signature of computational operation interfaces. This
Recommendation | International Standard contains such an Interface Definition Language, called ODP-IDL.

NOTE – This Recommendation | International Standard is technically aligned with the CORBA Interface Definition Language
specification.

Annex A is normative and provides a standard set of exceptions for a particular ODP distribution infrastructure.

Annex B is informative and provides the CORBA encoding of a type called TypeCode representing type descriptions.

© ISO/IEC ISO/IEC 14750 : 1999 (E)

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 14750:1999
https://standards.iteh.ai/catalog/standards/sist/e3ac697b-4bd2-406c-aba7-

fb783771701d/iso-iec-14750-1999

ISO/IEC 14750 : 1999 (E)

ITU-T Rec. X.920 (1997 E) 1

INTERNATIONAL STANDARD
ISO/IEC 14750 : 1998 (E)

ITU-T Rec. X.920 (1997 E)

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY – OPEN DISTRIBUTED PROCESSING –
INTERFACE DEFINITION LANGUAGE

1 Scope

This Recommendation | International Standard is intended to provide the ODP Reference Model (see ITU-T Rec. X.902 |
ISO/IEC 10746-2 and ITU-T Rec. X.903 | ISO/IEC 10746-3) with a language and environment neutral notation to
describe computational operation interface signatures. Use of this notation does not imply use of specific supporting
mechanisms and protocols.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

– ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1996, Information technology – Open
distributed processing – Reference Model: Foundations.

– ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1996, Information technology – Open
distributed processing – Reference Model: Architecture.

2.2 Additional references

– ISO/IEC 646:1991, Information technology – ISO 7-bit coded character set for information interchange.

– ISO/IEC 8859-1:1998, Information technology – 8-bit single-byte coded graphic character sets – Part 1:
Latin alphabet No. 1.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.902 |
ISO/IEC 10746-2:

– object;

– interface;

– interface signature.

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.903 |
ISO/IEC 10746-3:

– operation.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 14750:1999
https://standards.iteh.ai/catalog/standards/sist/e3ac697b-4bd2-406c-aba7-

fb783771701d/iso-iec-14750-1999

ISO/IEC 14750 : 1999 (E)

2 ITU-T Rec. X.920 (1997 E)

4 ODP IDL syntax and semantics

ODP IDL (the Interface Definition Language) is the language used to describe the interface signatures for interfaces that
client objects call and object implementations provide. An interface definition written in ODP IDL completely defines
the interface signature and fully specifies each operation’s parameters.

An ODP IDL specification logically consists of one or more files. A file is conceptually translated in several phases. The
first phase is preprocessing, which performs file inclusion and macro substitution. Preprocessing is controlled by
directives introduced by lines having # as the first character other than white space. The result of the preprocessing is a
sequence of tokens. Such a sequence of tokens, that is, a file after preprocessing, is called a translation unit.

ODP IDL obeys the same lexical rules as C++1), although new keywords are introduced to support distribution concepts.
It also provides full support for standard C++ preprocessing features. The ODP IDL specification is expected to track
relevant changes to C++ introduced by the ISO/IEC standardization effort.

The description of ODP IDL's lexical conventions is presented in 4.1. A description of ODP IDL preprocessing is
presented in 4.2. The scope rules for identifiers in an ODP IDL specification are described in 4.13 on.

The ODP IDL grammar is a subset of ISO/IEC C++ with additional constructs to support the operation invocation
mechanism. ODP IDL is a descriptive language; it supports C++ syntax for constant, type, and operation declarations; it
does not include any algorithmic structures or variables. The grammar is presented in 4.3.

This clause describes ODP IDL semantics and gives the syntax for ODP IDL grammatical constructs. The description of
ODP IDL grammar uses a syntax notation that is similar to Extended Backus-Naur format (EBNF). Table 1 lists the
symbols used in this format and their meaning.

Table 1 – ODP IDL EBNF format

4.1 Lexical conventions

This subclause2) presents the lexical conventions of ODP IDL. It defines tokens in an ODP IDL specification and
describes comments, identifiers, keywords, and literals – integer, character, and floating point constants and string
literals.

ODP IDL uses the ISO/IEC Latin-1 (ISO/IEC 8859-1) character set. This character set is divided into alphabetic
characters (letters), digits, graphic characters, the space (blank) character and formatting characters. Table 2 shows the
ODP IDL alphabetic characters; upper- and lower-case equivalencies are paired. Table 3 shows the digits and Table 4
shows the graphic characters.

The formatting characters are shown in Table 5.

1) Ellis, Margaret A. and Bjarne Stroustrop, The Annotated C++ Reference Manual, Addison-Wesley Publishing Company, Reading,

Massachusetts, 1990, ISBN 0-201-51459-1.

2) This sublcause is an adaptation of The Annotated C++ Reference Manual, Chapter 2; it differs in the list of legal keywords and
punctuation.

Symbol Meaning

::= Is defined to be

| Alternatively

<text> Non-terminal

"text" Literal

* The preceding syntactic unit can be repeated zero or more times.

+ The preceding syntactic unit can be repeated one or more times.

{} The enclosed syntactic units are grouped as a single synctactic unit.

[] The enclosed syntactic unit is optional – may occur zero or more times.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 14750:1999
https://standards.iteh.ai/catalog/standards/sist/e3ac697b-4bd2-406c-aba7-

fb783771701d/iso-iec-14750-1999

ISO/IEC 14750 : 1999 (E)

ITU-T Rec. X.920 (1997 E) 3

Table 2 – The 114 alphabetic characters (letters)

Char Description Char Description

Aa Upper/Lower-case A Àà Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Áá Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Ââ Upper/Lower-case A with circumflex accent

Dd Upper/Lower-case D Ãã Upper/Lower-case A with tilde

Ee Upper/Lower-case E Ää Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F Åå Upper/Lower-case A with ring above

Gg Upper/Lower-case G Ææ Upper/Lower-case dipthong A with E

Hh Upper/Lower-case H Çç Upper/Lower-case C with cedilla

Ii Upper/Lower-case I Èè Upper/Lower-case E with grave accent

Jj Upper/Lower-case J Éé Upper/Lower-case E with acute accent

Kk Upper/Lower-case K Êê Upper/Lower-case E with circumflex accent

Ll Upper/Lower-case L Ëë Upper/Lower-case E with diaeresis

Mm Upper/Lower-case M Ìì Upper/Lower-case I with grave accent

Nn Upper/Lower-case N Íí Upper/Lower-case I with acute accent

Oo Upper/Lower-case O Îî Upper/Lower-case I with circumflex accent

Pp Upper/Lower-case P Ïï Upper/Lower-case I with diaeresis

Qq Upper/Lower-case Q Ðð Upper/Lower-case Icelandic eth

Rr Upper/Lower-case R Ññ Upper/Lower-case N with tilde

Ss Upper/Lower-case S Òò Upper/Lower-case O with grave accent

Tt Upper/Lower-case T Óó Upper/Lower-case O with accute accent

Uu Upper/Lower-case U Ôô Upper/Lower-case O with circumflex accent

Vv Upper/Lower-case V Õõ Upper/Lower-case O with tilde

Ww Upper/Lower-case W Öö Upper/Lower-case O with diaeresis

Xx Upper/Lower-case X Øø Upper/Lower-case O with oblique stroke

Yy Upper/Lower-case Y Ùù Upper/Lower-case U with grave accent

Zz Upper/Lower-case Z Úú Upper/Lower-case U with acute accent

Ûû Upper/Lower-case U with circumflex accent

Üü Upper/Lower-case U with diaeresis

Ýý Upper/Lower-case Y with acute accent

Þþ Upper/Lower-case Icelandic thorn

ß Lower-case German sharp S

ÿ Lower-case Y with diaeresis

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 14750:1999
https://standards.iteh.ai/catalog/standards/sist/e3ac697b-4bd2-406c-aba7-

fb783771701d/iso-iec-14750-1999

ISO/IEC 14750 : 1999 (E)

4 ITU-T Rec. X.920 (1997 E)

Table 3 – Decimal digits

0 1 2 3 4 5 6 7 8 9

Table 4 – The 65 graphic characters

Char Description Char Description

! Exclamation point ¡ Inverted exclamation mark

" Double quote ¢ Cent sign

Number sign £ Pound sign

$ Dollar sign ¤ Currency sign

% Percent sign ¥ Yen sign

& Ampersand | Broken bar

' Apostrophe § Section/paragraph sign

(Left parenthesis ¨ Diaeresis

) Rigth parenthesis © Copyright sign

* Asterisk a Feminine ordinal indicator

+ Plus sign « Left angle quotation mark

, Comma ¬ Not sign

- Hyphen, minus sign – Soft hyphen

. Period, full stop ® Registered trade mark sign

/ Solidus - Macron

: Colon ° Ring above, degree sign

; Semicolon ± Plus-minus sign

< Less-than sign 2 Superscript two

= Equals sign 3 Superscript three

> Greater-than sign ´ Acute

? Question mark µ Micro

@ Commercial at ¶ Pilcrow

[Left square bracket · Middle dot

\ Reverse solidus ‚ Cedilla

] Right square bracket 1 Superscript one

^ Circumflex º Masculine ordinal indicator

_ Low line, underscore » Right angle quotation mark

` Grave ¼ Vulgar fraction 1/4

{ Left curly bracket ½ Vulgar fraction 1/2

| Vertical line ¾ Vulgar fraction 3/4

} Right curly bracket ¿ Inverted question mark

~ Tilde x Multiplication sign

÷ Division sign

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 14750:1999
https://standards.iteh.ai/catalog/standards/sist/e3ac697b-4bd2-406c-aba7-

fb783771701d/iso-iec-14750-1999

ISO/IEC 14750 : 1999 (E)

ITU-T Rec. X.920 (1997 E) 5

Table 5 – The Formatting Characters

4.1.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other separators. Blanks, horizontal and
vertical tabs, newlines, formfeeds, and comments (collective, "white space"), as described below, are ignored except as
they serve to separate tokens. Some white space is required to separate otherwise adjacent identifiers, keywords, and
constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken to be the longest string of
characters that could possibly constitute a token.

4.1.2 Comments

The characters /* start a comment, which terminates with the characters */. These comments do not nest. The
characters // start a comment which terminates at the end of the line on which they occur. The comment characters //, /*,
and */ have no special meaning within a // comment and are treated just like other characters. Similarly, the comment
characters // and /* have no special meaning within a /* comment. Comments may contain alphabetic, digit, graphic,
space, horizontal tab, vertical tab, form feed and newline characters.

4.1.3 Identifiers

An identifier is an arbitrarily long sequence of alphabetic, digit, and underscore ("_") characters. The first character must
be an alphabetic character. All characters are significant.

Identifiers that differ only in case collide and yield a compilation error. An identifier for a definition must be spelled
consistently (with respect to case) throughout a specification.

When comparing two identifiers to see if they collide:

• Upper- and lower-case letters are treated as the same letter. Table 2 defines the equivalence mapping of
upper- and lower-case letters.

• The comparison does not take into account equivalences between digraphs and pairs of letters (e.g. "æ"
and "ae" are not considered equivalent) or equivalences between accented and non-accented letters
(e.g. "à" and "a" are not considered equivalent).

• All characters are significant.

There is only one name space for ODP IDL identifiers. Using the same identifier for a constant and an interface, for
example, produces a compilation error.

4.1.4 Keywords

The identifiers listed in Table 6 reserved for use as keywords, and may not be used otherwise. The keyword Object in
ODP IDL is used to represent an interface type whereas the keyword interface is used to indicate the start of an
interface declaration in an interface signature template. The keyword "Object" can be used as a type specifier. The
keyword attribute defines a method giving access to a portion of the state of an object. An attribute definition is
logically equivalent to declaring a pair of accessor methods; one to retrieve the value of the attribute and one to set the
value of the attribute.

The keyword Exception is used to represent the ODP concept of unsuccessful named termination, the exception name
being the termination name.

Keywords obey the rules for identifiers (see 1.3) and must be written exactly as shown in the above list. For example,
"boolean" is correct; "Boolean" is not. ODP IDL specifications use the characters shown in Table 7 as punctuation.

In addition, the tokens listed in Table 8 are used by the preprocessor.

Description Abbreviation ISO/IEC 646 octal value

Alert BEL 007

Backspace BS 010

Horizontal tab HT 011

Newline NL, LF 012

Vertical tab VT 013

Form feed FF 014

Carriage return CR 015

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 14750:1999
https://standards.iteh.ai/catalog/standards/sist/e3ac697b-4bd2-406c-aba7-

fb783771701d/iso-iec-14750-1999

ISO/IEC 14750 : 1999(E)

6 ITU-T Rec. X.920 (1997 E)

Table 6 – Keywords

Table 7 – Punctuation tokens

Table 8 – Preprocessor tokens

! || && include pragma define

4.1.5 Literals

Wide character and wide string literals are specified exactly like character and string literals. All character and string
literals, both wide and non-wide, may only be specified (portably) using the characters found in the ISO/IEC 8859-1
character set. Note that these extensions for international characters only affect the specification of literals in the ODP
IDL and not the rest of ODP IDL source files. That is, the interface names, operation names, type names, etc., will
continue to be limited to the ISO/IEC 8859-1 character set.

Literals of the new integer and floating-point types are specified as described in this subclause (Integer, Literals and
Floating-Point Literals).

4.1.5.1 Integer literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten) unless it begins with 0 (digit zero).
A sequence of digits starting with 0 is taken to be an octal integer (base eight). The digits 8 and 9 are not octal digits. A
sequence of digits preceeded by 0x or 0X is taken to be a hexadecimal integer (base sixteen). The hexadecimal digits
include a or A through f or F with decimal values ten through fifteen, respectively. For example, the number twelve can
be written 12, 014 or 0XC.

4.1.5.2 Character literals

A character literal is one or more characters enclosed in single quotes, as in ’x’. Character literals have type char.

A character is an 8-bit quantity with a numerical value between 0 and 255 (decimal). The value of a space, alphabetic,
digit or graphic characterliteral is the numerical value of the character as defined in the ISO/IEC Latin-1
(ISO/IEC 8859-1) character set standard (see Tables 2, 3, and 4). The value of a null is 0. The value of a formatting
character literal is the numerical value of the character as defined in the ISO/IEC 646 standard (see Table 5). The
meaning of all other characters is implementation-dependent.

Non-graphic characters must be represented using escape sequences as defined below in Table 9. Note that escape
sequences must be used to represent singlequote and backlash characters in character literals.

If the character following a backlash is not one of those specified, the behaviour is undefined. An escape sequence
specifies a single character.

The escape \000 consists of the backlash followed by one, two, or three octal digits that are taken to specify the value of
the desired character. The escape \xhh consists of the backlash followed by x followed by one or two hexadecimal digits
that are taken to specify the value of the desired character. A sequence of octal or hexadecimal digits is terminated by the
first character that is not an octal digit or a hexadecimal digit respectively. The value of a character constant is
implementation dependent if it exceeds that of the largest character.

any default in oneway struc wchar

attribute double inout out switch wstring

boolean enum interface raises TRUE

case exception long readonly typedef

char FALSE module sequence unsigned

const fixed Object short union

context float octet string void

; { } : :: , = + - () < > []

’ " \ | ^ & * / % ~ << >>

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 14750:1999
https://standards.iteh.ai/catalog/standards/sist/e3ac697b-4bd2-406c-aba7-

fb783771701d/iso-iec-14750-1999

ISO/IEC 14750 : 1999 (E)

ITU-T Rec. X.920 (1997 E) 7

Table 9 – Escape sequences

4.1.5.3 Floating-point literals

A floating-point consists of an integer part; a decimal point, a fraction part, an e or E and an optionally signed integer
exponent. The integer and fraction parts both consist of a sequence of decimal (base ten) digits. Either the integer part or
the fraction part (but not both) may be missing; either the decimal point or the letter e (or E) and the exponent (but not
both) may be missing.

4.1.5.4 Fixed-point literal

A fixed-point decimal literal consists of an integer part, a decimal point, a fraction part and a d or D. The integer and
fraction parts both consist of a sequence of decimal (base 10) digits. Either the integer part or the fraction part (but not
both) may be missing; the decimal point [but not the letter d (or D)] may be missing.

4.1.5.5 String literals

A string literal is a sequence of characters (as defined in 4.1.5.2) surrounded by double quotes, as in "...".

Adjacent string literals are concatenated. Characters in concatenated strings are kept distinct. For example,

"\xA" "B" contains the two characters ’\xA’ and ’B’ after concatenation (and not the single hexadecimal character ’\xAB’).

The size of a string literal is the number of character literals enclosed by the quotes, after concatenation. The size of the
literal is associated with the literal.

4.2 Preprocessing

A preprocessing notation can be used as a module notation, in order to organize specifications and to be able to refer to
parts of a specification in a given specification. Therefore, the source file inclusion #include must be understood as a
generic way of including a given module of specification and is not linked with any particular filing system.

ODP IDL preprocessing which is specified in the ANSI/ISO C++ Standard provides macrosubstitution, conditional
compilation, and source file inclusion. In addition, directives are provided to control line numbering in diagnostics and
for symbolic debugging, to generate a diagnostic message with a given token sequence, and to perform implementation-
dependent actions (the # pragma directive). Certain predefined names are available. These facilities are conceptually
handled by a preprocessor, which may or may not actually be implemented as a separate process.

Lines beginning with # (also called "directives") communicate with this preprocessor. White space may appear before
the #. These lines have syntax independent of the rest of the ODP IDL; they may appear anywhere and have effects that
last (independent of the ODP IDL scoping rules) until the end of the translation unit. The textual location of ODP
IDL-specific pragmas may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a source file by placing a backslash
character ("\"), immediately before the newline at the end of the line to be continued. The preprocessor effects the
continuation by deleting the backslash and the newline before the input sequence is divided into tokens. A backslash
character may not be the last character in a source file.

Description Escape sequence

Newline \n
Horizontal tab \t
Vertical tab \v
Backspace \b
Carriage return \r
Form feed \f
Alert \a
Backslash \\
Question mark \?
Single quote \’
Double quote \"
Octal number \ooo
Hexadecimal number \xhh

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 14750:1999
https://standards.iteh.ai/catalog/standards/sist/e3ac697b-4bd2-406c-aba7-

fb783771701d/iso-iec-14750-1999

	�Qfﬁ™‡_Ž¡LŽ£iY�	ﬂﬂdÙ:[Þ,¹N#~−4¸��k®˙éÔY®µm�<'Áłö–ª−¨VÕO‚�AœOFsh‡¤(õ˘Í{�ÎPuÎÂOÿÞ–

