INTERNATIONAL STANDARD

First edition 1992-09-01 AMENDMENT 2

1998-12-15

Information technology — Open Systems Interconnection — Structure of management information: Guidelines for the definition of managed objects

AMENDMENT 2: Addition of the NO-MODIFY syntax element and guideline extensions

Technologies de l'information — Interconnexion de systèmes ouverts — Structures des informations de gestion: Principes directeurs pour la définition des objets gérés

AMENDEMENT 2: Addition de l'élément de syntaxe «NO-MODIFY» et des extensions de principe directeur

Contents

Page

1)	Subclause 2.1	1
2)	Subclause 8.2	1
3)	Subclause 8.4.2	1
4)	Subclause 8.4.3.2	1
5)	Index	2
6)	New clause 9	2
7)	New clause 10	7

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/IEC 10165-4:1992/Amd 2:1998

https://standards.iteh.ai/catalog/standards/sist/940950b1-4875-4555-8847-3f50e94f3b6c/isoiec-10165-4-1992-amd-2-1998

© ISO/IEC 1998

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office \bullet Case postale 56 \bullet CH-1211 Genève 20 \bullet Switzerland Printed in Switzerland

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Amendment 2 to ISO/IEC 10165-4:1992 was prepared by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, Subcommittee SC 33, *Distributed application services*, in collaboration with ITU-T. The identical text is published as ITU-T Rec. X.722/Amd.2.

(standards.iteh.ai)

SO/IEC 10165-4:1992/Amd 2:1998

https://standards.iteh.ai/catalog/standards/sist/940950b1-4875-4555-8847-3f50e94f3b6c/isoiec-10165-4-1992-amd-2-1998

Introduction

This Amendment adds the NO-MODIFY syntax element to the attribute properties of the package template in order to clearly specify that an attribute cannot be modified in subclasses and compatible classes of the managed object class.

This Amendment proposes that the **use of ASN.1:1994 should not be forbidden** (i.e. normative specification of ASN.1:1994 may be employed) in new and developing OSI Systems Management standards for the following reasons:

- ASN.1:1990 bugs/defects;
- ASN.1:1994 enhancements.

ASN.1:1990 and ASN.1:1994 modules can be mixed and are completely compatible using the guidelines in A.2 of Rec. ITU-T X.680 | ISO/IEC 8824-1, ASN.1 Specification of Basic Notation. This "mixed mode" use of ASN.1 places certain restrictions on allowed productions of both ASN.1:1990 and ASN.1:1994. If these guidelines are maintained, not only are ASN.1:1990 and ASN.1:1994 completely compatible, they are virtually indistinguishable and have identical encoding. Using these guidelines, new and developing OSI Systems Management standards may use both ASN.1:1990 and ASN.1:1994 for normative specification of syntax.

This Amendment introduces conventions for the specification of ASN.1 and GDMO directives in order to clearly identify specification and user options associated with ASN.1 modules and GDMO templates.

<u>ISO/IEC 10165-4:1992/Amd 2:1998</u> https://standards.iteh.ai/catalog/standards/sist/940950b1-4875-4555-8847-3f50e94f3b6c/isoiec-10165-4-1992-amd-2-1998

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY – OPEN SYSTEMS INTERCONNECTION – STRUCTURE OF MANAGEMENT INFORMATION: GUIDELINES FOR THE DEFINITION OF MANAGED OBJECTS

AMENDMENT 2 Addition of the NO-MODIFY syntax element and guideline extensions

1) Subclause 2.1

Insert the following references by numerical order:

- ITU-T Recommendation X.680 (1994) | ISO/IEC 8824-1:1995, Information technology Abstract Syntax Notation One (ASN.1): Specification of basic notation.
- ITU-T Recommendation X.681 (1994) | ISO/IEC 8824-2:1995, Information technology Abstract Syntax Notation One (ASN.1): Information object specification.
- ITU-T Recommendation X.682 (1994) | ISO/IEC 8824-3:1995, Information technology Abstract Syntax Notation One (ASN.1): Constraint specification.
- ITU-T Recommendation X.683 (1994) | ISO/IEC 8824-4:1995, Information technology Abstract Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications.
- ITU-T Recommendation X.690 (1994) | ISO/IEC 8825-1:1995, Information technology ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER).
- ITU-T Recommendation X.691 (1995) | ISO/IEC 8825-2:1995, Information technology ASN.1 encoding rules: Specification of Packed Encoding Rules (PER).

2) Subclause 8.2

Add the following to the end of item m):

(Guidelines for the Production of Equivalent ASN.1:1990 and ASN.1:1994 Modules are given in clause 9.)

3) Subclause 8.4.2

Add the following to this subclause, following the [SET-BY-CREATE] property in the propertylist. (The [SET-BY-CREATE] property was added in by Amendment 1):

[NO-MODIFY]

4) Subclause 8.4.3.2

Add the following two new paragraphs before the last paragraph:

The absence of the REPLACE property may be used to specify that an attribute cannot be replaced for instances of a class but this absence does not preclude subclasses adding the REPLACE property. The NO-MODIFY property is present to explicitly specify that an attribute cannot be modified (is read-only) in the class having this property and in all

ISO/IEC 10165-4 : 1992/Amd.2 : 1998 (E)

subclasses and in all compatible managed objects (i.e. managed objects behaving allomorphically to the class). This property is inconsistent with and shall not be present in a managed object class definition that has any of the REPLACE, GET-REPLACE, ADD, REMOVE, or ADD-REMOVE properties on the same attribute.

NOTE 3 – The NO-MODIFY property is not necessarily inconsistent with the REPLACE-WITH-DEFAULT property because this operation is often used with a meaning of "reset" that can be consistent with a manager's inability to control the attribute's value. NOTE 4 – Before the NO-MODIFY property was added to GDMO, the convention was to specify that property in BEHAVIOUR templates or in documents referenced in BEHAVIOUR templates.

If it is desired that part of the definition of an attribute is that the attribute shall not be replaced in any class that specifies the attribute, then this constraint shall be specified in a BEHAVIOUR template referenced by the ATTRIBUTE template.

5) Index

Add new index entry:

NO-MODIFY 26-27

Change these index entries:

BEHAVIOUR 25-26, 30-32, 34-35, 37-40

REPLACE 14, 26-27

6) New clause 9

Add a new clause 9, following 8.11.3.5:

9 Guidelines for production of equivalent ASN.1:1994 and ASN.1:1990 modules

It is possible in developing standards, that normative ASN.1:1994 modules be provided. In order to allow the use of ASN.1:1994, it is recommended that an equivalent normative ASN.1:1990 module be provided subject to the following:

- 1) it has the same object identifier as the ASN.1:1994 module;
- 2) it is normative but the standard states that in the event of discrepancies between the ASN.1:1990 and ASN.1:1994 modules, the ASN.1:1994 module take precedence;

3) the standard states that use of ASN.1:1990 will be retained as long as needed.

NOTE 1 – ISO/IEC JTC 1/SC 21 rules dictate a periodic review for renewal of the ASN.1:1990 International Standards every one (1) year¹). National Bodies are asked to consider the above when reviewing the ASN.1:1990 standards. This ensures that the ASN.1:1990 standards are retained as long as needed.

Also to reduce errors, it is recommended that the ASN.1:1990 module be a machine generated transformation of the ASN.1:1994 module since this transformation can be easily automated.

NOTE 2 – If an editor desires to use a commercial tool (e.g. made available to the standards community at virtually no cost, vendor XXX's ASN.1 Tools) for converting ASN.1:1994 to ASN.1:1990 to reduce the possibility of errors, it has been suggested that the editor should add a comment at the top of the generated code that says something like:

- -- XXX ASN.1 Tools used for conversion --
- -- from ASN.1:1994 to ASN.1:1990 --

with the following Note:

NOTE – Although ISO cannot advertise that one software tool must be used as opposed to another, at present, XXX ASN.1 Tools is one of the software tools allowing the conversion from ASN.1:1994 to ASN.1:1990.

It should be noted that problems can be avoided if only the common subset of ASN.1:1990 and ASN.1:1994 is used. In this case, only the ASN.1:1994 module needs to be included in this standard.

ISO/IEC JTC 1/SC 21 (SC21) reaffirmed the continuation of availability of the ASN.1:1990 standards for reasons of conformance and interpretability (in SC21 N 9001 rev). SC21 requested its WGs to continue to maintain these standards. An SC21 resolution to continue maintenance will be conducted at each SC21 meeting (currently, once a year).

9.1 Guidelines

The following guidelines must be followed:

- A single systems management document may reference ASN.1 modules from both ASN.1:1990 and ASN.1:1994. However, any given module is required to completely conform to *either* ASN.1:1990 *or* ASN.1:1994, where directives defined in clause 10 are used to identify which version of the notation is being used in a particular module.
- 2) Type and value references may be imported in an ASN.1:1994 module from an ASN.1:1990 module as long as:
 - a) ASN.1:1990 MACROs are not imported in an ASN.1:1994 module; therefore one cannot create an instance of a MACRO in an ASN.1:1994 module.
 - b) Identifiers for SET and SEQUENCE and CHOICE values are present.
- 3) Also, type and value references may be imported in an ASN.1:1990 module from an ASN.1:1994 module as long as:
 - ASN.1:1994 CHARACTER STRING, BMPStrings, UniversalStrings, EMBEDDED PDV types are not imported. Since there is no ASN.1:1990 equivalent for these ASN.1:1994 types, their use is discouraged in ASN.1:1994 modules which require an equivalent ASN.1:1990 module. For this same reason, the use of the ASN.1:1994 Tuple type is forbidden in ASN.1:1994 modules which require an equivalent ASN.1:1990 module²).

NOTE 1 - If the proposed guidelines are maintained, there are no adverse implications of importing type and value references from one version of ASN.1 to another because equivalent constructs exist in all cases.

4) The following ASN.1:1994 module shall be used for definitions of ASN.1 information object classes that are imported into ASN.1:1994 modules:

```
-- <ASN1.Version 1994 SMModule {joint-iso-itu-t ms(9) smi(1) part4(4)

-- asn1Module(2) 2} >--
```

SMModule {joint-iso-itu-t ms(9) smi(1) part4(4) asn1Module(2) 2}

```
DEFINITIONS ::= BEGIN
```

REGISTERED-AS ::= TYPE-IDENTIFIER

-- TYPE-IDENTIFIER is defined in ISO/IEC 8824-1 and is available in any module

-- without the necessity for importing it and is defined as: -- TYPE-IDENTIFIER::= CLASS

- -- { iec-10165-4-1992-amd-2-1998
- -- &id OBJECT IDENTIFIER UNIQUE,
- -- &Type
- -- }

ł

}

-- WITH SYNTAX {&Type IDENTIFIED BY &id}

INFO-REPLY-IDENTIFIER ::= CLASS

&Info OPTIONAL, &Reply OPTIONAL, ®isteredAs OBJECT IDENTIFIER UNIQUE

WITH SYNTAX {INFO &Info REPLY &Reply IDENTIFIED BY ®isteredAs}

RegisteredAsTable REGISTERED-AS ::= {...}

InfoReplyTable INFO-REPLY-IDENTIFIER ::= {...}

-- RegisteredAsTable to be filled in by GDMO ATTRIBUTE and PARAMETER

-- Templates

-- InfoReplyTable to be filled in by GDMO ACTION and NOTIFICATION Templates

END

²⁾ Tuple is the name of the ASN.1:1994 production that allows control characters to be inserted in the value notation of an IA5String, something that cannot be done in ASN.1:1990. For example, ... greetings IA5String ::= {"hello", cr, "there"} inserts a carriage return between "hello" and "there" (cr is imported from a module defined in ITU-T Rec. X.680 | ISO/IEC 8824-1 and is equated to a literal carriage return).

ISO/IEC 10165-4: 1992/Amd.2: 1998 (E)

5) Editors define ASN.1:1994 modules as in the following example:

-- <ASN1.Version 1994 ExampleModule > --

ExampleModule {-- a valid object identifier goes here --}

DEFINITIONS ::= BEGIN

IMPORTS REGISTERED-AS, INFO-REPLY-IDENTIFIER, RegisteredAsTable, InfoReplyTable FROM SMModule {joint-iso-itu-t ms(9) smi(1) part4(4) asn1Module(2) 2};

- Foo::= SEQUENCE { id1 REGISTERED-AS.&id ({RegisteredAsTable}), syntax1 REGISTERED-AS.&Type ({RegisteredAsTable} {@.id1})}
- Bar::= SEQUENCE { id2 REGISTERED-AS.&id ({RegisteredAsTable}), syntax2 SEQUENCE OF REGISTERED-AS.&Type ({RegisteredAsTable} {@id2})}

firstExtensionId OBJECT IDENTIFIER ::= {1 3 17 103 10 1}

FirstExtensionInfo ::= PrintableString

-- Illustrates use of a contained subtype constraint of an open type --

FooBar ::= Foo (WITH COMPONENTS { id1 (firstExtensionId), syntax1(FirstExtensionInfo)})

END

Note that since GDMO is being used in combination with the ASN.1 **REGISTERED-AS** information object class, **FooBar** is a duplication of information. That is, the GDMO specification plus **REGISTERED-AS** in ASN.1 is equivalent to the inner type constraint on **Foo. FooBar** simply illustrates that while an open type can be constrained to any type, an **ANY/ANY DEFINED BY** cannot be constrained to anything other than an **ANY/ANY DEFINED BY** type in ASN.1:1990 and it illustrates how to do a mapping from an open type so constrained in ASN.1:1994 to an ASN.1 comment in ASN.1:1990.

- 6) Editors convert ASN.1:1994 module using the following instructions to produce an equivalent ASN.1:1990 module:
 - a) Remove the portion of the **IMPORTS** statement that refers to module SMModule. This gets rid of the imported definitions of the information object classes **REGISTERED-AS** and **INFO-REPLY-IDENTIFIER**.
 - b) Convert all open-type references to ANY or ANY DEFINED BY types. To do so, convert all ASN.1 syntax of the form according to the following:

First, convert:

FROM	то
REGISTERED-AS.&id	OBJECT IDENTIFIER

If "REGISTERED-AS.&Type" is a component of a SET or SEQUENCE

and it is defined in the same SET or SEQUENCE as "id"

then convert:

FROM	то
REGISTERED-AS.&Type ({RegisteredAsTable} {@id1})	ANY DEFINED BY id
REGISTERED-AS.&Type ({RegisteredAsTable} {@.id1})	ANY DEFINED BY id

else convert:

FROM	ТО
REGISTERED-AS.&Type ({RegisteredAsTable} {@id1})	ANY
REGISTERED-AS.&Type ({RegisteredAsTable} {@.id1})	ANY

- c) If AUTOMATIC TAGS is in effect for the ASN.1:1994 module, apply 22.5-22.7 of ITU-T Rec. X.680 | ISO/IEC 8824-1, which describes how automatic tagging is applied to the components of a SET, SEQUENCE or CHOICE type, and remove the syntax "AUTOMATIC TAGS" from the module definition statement.
- d) If an open type is constrained using the TypeConstraint subtype notation, remove the constraint, since **ANY** and **ANY DEFINED BY** cannot be constrained with anything but an **ANY** or **ANY DEFINED BY** in ASN.1:1990.
- e) If the definition of an ENUMERATED type uses the syntax "identifier"

for its EnumerationItem, change it to "identifier(number)". For example, change:

ENUMERATED {a, b, c, d}

to

ENUMERATED {a(0), b(1), c(2), d(3)}

f) Remove all occurrences of extension markers (i.e. "..."). For example, change:

SEQUENCE {	
i	IA5String,
b	BOOLEAN,
iTelä	
to	
SEQUENCE {	
i	IA5String,
b	BOOLEAN
}	

g) Remove any occurrence of **EXTENSIBILITY IMPLIED** from the module definition statement.

h) Remove all whitespace and newline characters from within hstrings and bstrings, and remove all newline characters from within cstrings. For example, change:

```
b BIT STRING ::= '0001 1100 1101 0110 1110 0111 1101 0101'B
o OCTET STRING ::= '8F3CE483 0192B345 932D5EF2 8AA3E700'H
p PrintableString ::= ''Hello,
world!''
```

to

```
b BIT STRING ::= '0001110011011011110011111010101'B
o OCTET STRING ::= '8F3CE4830192B345932D5EF28AA3E700'H
p PrintableString ::= ''Hello,world!''
```

i) Convert all CharacterStringList notations to their cstring equivalent. For example, change:

```
name PrintableString ::= {"This is a long string, that is
spread across two lines"}
```

to

name PrintableString ::= "This is a long string, that is spread across two lines"

j) Convert any value set references into references to constrained types. For example, change:

Ages INTEGER ::= {1 | 4 | 7..20}

to

Ages ::= INTEGER (1 | 4 | 7..20)

NOTE 2 - It is preferable to use constrained types instead of value sets unless parameterization and information object classes are being heavily used, for this is typically when value sets are particularly useful.

ISO/IEC 10165-4: 1992/Amd.2: 1998 (E)

 k) Convert all occurrences of the INSTANCE OF type to their equivalent SEQUENCE type. For example, change:

```
A ::= INSTANCE OF REGISTERED-AS
to
A ::= SEQUENCE {
type-id OBJECT IDENTIFIER,
value [0] ANY DEFINED BY type-id
```

1) Remove the identifiers "mantissa", "base" and "exponent" from any value of type REAL, and replace any inner type constraints present on REAL types with a comment. For example, change:

```
ten REAL ::= {mantissa 1, base 10, exponent 1}
```

```
DecimalReal ::= REAL (WITH COMPONENTS {..., base 10}) to
```

```
ten REAL ::= {1, 10, 1}
```

```
DecimalReal ::= REAL -- Shall be encoded as base 10
```

m) Change all occurrences of the value notation for **EXTERNAL** to its ASN.1:1990 equivalent. For example, change:

```
extern1990 EXTERNAL ::= {
                          \{123456\},\
     direct-reference
     indirect-reference
                          3.
     encoding
                          single-ASN1-type : IA5String : "hello"
}
to
extern1994 EXTERNAL ::= {
     identification context-negotiation : {
          presentation-context-id
                                        3.
                                   \{123456\}
          transfer-syntax
     }.
     data-value
                        notation : IA5String : "hello"
```

n) Replace all ASN.1:1994 permitted alphabets with their ASN.1:1990 equivalents. For example, change:

```
UpperCaseAndSpaceOnly ::= PrintableString (FROM("A".."Z" | " "))
```

to

```
\begin{array}{l} UpperCaseAndSpaceOnly::= PrintableString (FROM("A" | "B" | "C" | \\ "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | \\ "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | \\ "T" | "U" | "V" | "W" | "X" | "Y" | "Z" )) \end{array}
```

o) Change all ASN.1:1994 set expressions used in the subtype notation to their ASN.1:1990 equivalent. For example, change:

PartNumber ::= NumericString (SIZE(8) ^ FROM("0".."9"))

to

```
PartNumber ::= NumericString (SIZE(8)) (FROM("0"|"1"|"2"|"3"|"4"|
"5"|"6"|"7"|"8"|"9"))
```

p) Where o) cannot be done because it results in an infinite set, replace the portion of the ASN.1:1994 subtype notation that results in an infinite set with a comment. For example, change:

AllButZeroToTen ::= INTEGER(ALL EXCEPT (0..10))

to

```
AllButZeroToTen ::= INTEGER -- all integer values except 0 - 10
```

Applying the above conversion instructions to the ASN.1:1994 **ExampleModule** in guideline 5 produces: