INTERNATIONAL STANDARD

First edition 1999-03-01

Biological evaluation of medical devices —

Part 9:

Framework for identification and quantification of potential degradation products

iTeh Évaluation biologique des dispositifs médicaux — Partie 9: Cadre pour l'identification et la quantification des produits potentiels de dégradation ai

ISO 10993-9:1999 https://standards.iteh.ai/catalog/standards/sist/ba4d63cc-0705-408c-a35b-807def3c3aa2/iso-10993-9-1999

Contents

1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Principles for design of degradation studies	2
4.1 General	2
4.2 Preliminary considerations	2
4.3 Study design	3
4.4 Characterization of degradation products from medical devices	3
5 Study report	3
Annex A (normative) Consideration of the need for degradation studies	5
Annex B (informative) Biodegradation study considerations to have been been been been been been been be	6
Bibliography	8
https://standards.iteh.ai/catalog/standards/sist/ba4d63cc-0705-408c-a35b-	

807def3c3aa2/iso-10993-9-1999

© ISO 1999

International Organization for Standardization Case postale 56 • CH-1211 Genève 20 • Switzerland Internet iso@iso.ch

Printed in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 10993-9 was prepared by Technical Committee ISO/TC 194, *Biological evaluation of medical devices*.

This first edition cancels and replaces the first edition of ISO/TR 10993-9:1994, which has been technically revised.

ISO 10993 consists of the following parts, under the general title *Biological evaluation of medical devices*:

- Part 1: Evaluation and testing
- Part 2: Animal welfare requirements
- Part 3: Tests for genotoxicity, carcinogenicity and reproductive toxicity https://standards.iteh.ai/catalog/standards/sist/ba4d63cc-0705-408c-a35b-
- Part 4: Selection of tests for interactions with blood o-10993-9-1999
- Part 5: Tests for in vitro cytotoxicity
- Part 6: Tests for local effects after implantation
- Part 7: Ethylene oxide sterilization residuals
- Part 9: Framework for the identification and quantification of potential degradation products
- Part 10: Tests for irritation and sensitization
- Part 11: Tests for systemic toxicity
- Part 12: Sample preparation and reference materials
- Part 13: Identification and quantification of degradation products from polymers
- Part 14: Identification and quantification of degradation products from ceramics
- Part 15: Identification and quantification of degradation products from metals and alloys
- Part 16: Toxicokinetic study design for degradation products and leachables
- Part 18: Chemical characterization.

Further parts will deal with other relevant aspects of biological testing.

Annex A forms a normative part of this part of ISO 10993. Annex B is for information only.

This part of 10993 is intended to present the general principles on which the specific material investigations to identify and quantify degradation products described in ISO 10993-13 (polymers), ISO 10993-14 (ceramics) and ISO 10993-15 (metals and alloys) are based.

Information obtained from these studies is intended to be used in the biological evaluations described in the remaining parts of ISO 10993.

The materials used to construct medical devices may form degradation products when exposed to the biological environment, and these products may behave differently than the bulk material in the body.

Degradation products can be generated in different ways, either mechanically (by relative motion between two or more different components), by fatigue loading, as a result of fracture and/or by release from the medical device due to interactions with the environment, or combinations thereof.

Mechanical wear causes mostly particulate debris, whereas the release of substances from surfaces due to leaching, chemical breakdown of structures or corrosion can lead to free ions or to different kinds of reaction products in the form of organic or inorganic compounds.

The degradation products may be either reactive, or stable and without biochemical reaction with their environment. Accumulations of substantial quantities of stable degradation products may, however, have physical effects on the surrounding tissues. Degradation products may remain at the location of their generation or may be transported within the biological environment by various mechanisms.

The level of biological tolerability of degradation products depends on their nature and concentration, and should be primarily assessed through clinical experience and focused studies. For theoretically possible, new and/or unknown degradation products, relevant testing is necessary. For well-described and clinically accepted degradation products, no further investigation may be necessary.

Biological evaluation of medical devices —

Part 9:

Framework for identification and quantification of potential degradation products

1 Scope

This part of ISO 10993 provides general principles for the systematic evaluation of the potential and observed biodegradation of medical devices and for the design and performance of biodegradation studies.

This part of ISO 10993 is not applicable to:

- a) viable-tissue engineered products;
- b) methodologies for the generation of degradation products by mechanical processes. Methodologies for the production of this type of degradation product are described in specific product standards, where available;
- c) leachable components which are not degradation products a 1000

Where product standards provide applicable product-specific methodologies for the identification and quantification of degradation products, those standards shall be considered as alternatives.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO 10993. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO 10993 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 10993-1:1997, Biological evaluation of medical devices — Part 1: Evaluation and testing.

ISO 10993-2:1992, Biological evaluation of medical devices — Part 2: Animal welfare requirements.

3 Terms and definitions

For the purposes of this part of ISO 10993, the terms and definitions given in ISO 10993-1 and the following apply.

3.1 degradation decomposition of a material

3.2

biodegradation

degradation due to the biological environment

NOTE Biodegradation may be modelled by in vitro tests.

3.3

bioresorbable medical device

medical device intended for degradation and resorption in the biological environment of the body

3.4

leachable

extractable component from a material that is not a product of chemical degradation

3.5

corrosion

attack on metallic materials by chemical or electrochemical reactions

NOTE The term is sometimes used in a general sense for the deterioration of other materials, but is in this part of ISO 10993 reserved for metallic materials.

3.6

substance

single chemical element or compound, or a complex structure of compounds

3.7

iTeh STANDARD PREVIEW

one of the different parts of which a device is composed rds.iteh.ai)

3.8

degradation product

device component

ISO 10993-9:1999 arivad from the chemical break do

any particle or chemical compound that is derived from the chemical breakdown of the original material 807def3c3aa2/iso-10993-9-1999

4 Principles for design of degradation studies

The approach to the assessment of degradation varies with the nature of the material under investigation, the medical device, the local environment and the anatomic location of the specific device. When a specific device is to be evaluated, and where the details of the chemistry of the service environment for that device are known, the evaluation should be carried out in an environment appropriate to these conditions.

When available, materials-specific degradation standards that address identification and quantification of degradation products, such as ISO 10993-13 for polymers, ISO 10993-14 for ceramics and ISO 10993-15 for metals and alloys, shall be used in the design of degradation studies. Devices composed of more than two material types shall consider all relevant degradation standards.

4.2 Preliminary considerations

Careful consideration of the potential for intended or unintended degradation of a material is essential to the evaluation of the biological safety of a device. Part of this consideration is an assessment of the chemical characteristics and known degradation mechanisms, followed by an assessment of the need for, and design of, experimental biodegradation studies. Based upon a review of the literature and previous clinical experience with equivalent materials, further biological evaluation of the degradation products may be considered necessary.

It is neither necessary nor practical to conduct degradation studies for all medical devices. Consideration of the need for degradation studies is provided in annex A. The assessment of the need for experimental degradation studies shall include a review of the literature and/or documented clinical experience. Such a study can result in the

conclusion that no further testing is needed if the product under consideration has a demonstrated history of acceptable clinical experience, new data, published data and analogies with known devices, materials and degradation products.

Guidance on the biological evaluation of degradation products is given in ISO 10993-1.

4.3 Study design

A study protocol complete with the purpose of the study shall be designed and documented to address the issues identified in 4.1. The protocol shall define the analytical methods by which the following characteristics of degradation products are to be investigated:

- a) chemical and physicochemical properties;
- b) surface morphology; and
- c) biochemical properties.

The protocol shall also describe the methods used to generate degradation products.

The protocol for multicomponent devices shall take into account each individual component/material and shall consider synergistic effects on the degradation of the different components.

4.4 Characterization of degradation products from medical devices

The degradation products produced in the study may be particulate or soluble compounds or ions. Appropriate analytical methods to characterize these products shall be used, validated and reported in the study report.

If biological evaluation of the degradation products is required, then care shall be taken in the design of the degradation study to ensure that it does not inter<u>fere with the bio</u>logical assay.

https://standards.iteh.ai/catalog/standards/sist/ba4d63cc-0705-408c-a35b-

Considerations for the biodegradation study are provided in annex BoThe protocol shall include:

- a) identification and characterization of device and/or material and intended use;
- b) identification and characterization of possible mechanism of degradation;
- c) identification and characterization of known, probable and potential degradation products;
- d) test methodologies.

NOTE 1 The extent and rate of release of degradation products depends on variables such as manufacturing processes which alter surface composition and structures, migration to the surface from within the material, solubility in and chemical composition of the physiological milieu, etc.

NOTE 2 The study may lead to the conclusion that enough data are available, so that further investigation is not necessary.

5 Study report

The study report shall include the following information, where relevant:

- a) description of material and/or device (see B.1 in annex B), including intended use and nature of body contact;
- b) assessment of degradation and rationale for the assessment of degradation;
- c) identification and quantification of degradation products (e.g. form and condition of degradation products, their stability and controls used);

- d) description of degradation test methods, test conditions, test materials and procedures, including controls;
- e) description of analytical methods, including quantification limits and controls;
- f) statement of compliance to appropriate good laboratory practices, to quality management systems for test laboratories and/or ISO Guide 25;
- g) summary of results; and
- h) interpretation and discussion of results.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 10993-9:1999 https://standards.iteh.ai/catalog/standards/sist/ba4d63cc-0705-408c-a35b-807def3c3aa2/iso-10993-9-1999

Annex A

(normative)

Consideration of the need for degradation studies

Degradation studies shall be considered if:

- a) the device is designed to be bioresorbable; or
- b) the device is intended to be implanted for longer than thirty days; or
- c) an informed consideration of the material(s) system indicates that toxic substances may be released during body contact.

Degradation studies may not be necessary if:

- a) the probable products of degradation are in the predicted quantities, and produced at a rate similar to those that have a history of safe clinical use; and/or
- b) if particulate, they are present in a physical state, i.e. size distribution and shape, similar to those with a history of safe clinical use or **iTeh STANDARD PREVIEW**
- c) sufficient degradation data relevant to the substances and degradation products in the intended use already exist.

The need for *in vivo* studies shall be considered in light of results from *in vitro* studies.

https://standards.iteh.ai/catalog/standards/sist/ba4d63cc-0705-408c-a35b-

Where appropriate, *in vitro* experiments **Shall** be considered to fivestigate theoretically possible degradation processes. *In vivo* studies shall take into consideration animal welfare (see ISO 10993-2). *In vivo* and *in vitro* studies shall also be considered to determine the probability of occurrence of degradation and the identification of probable degradation products and degradation rate.