

Designation: A 354 - 03

Standard Specification for Quenched and Tempered Alloy Steel Bolts, Studs, and Other Externally Threaded Fasteners¹

This standard is issued under the fixed designation A 354; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope *

1.1 This specification² covers the chemical and mechanical requirements of quenched and tempered alloy steel bolts, studs, and other externally threaded fasteners 4 in. and under in diameter for application at normal atmospheric temperatures, where high strength is required and for limited application at elevated temperature (Note 1). Any alloy steel capable of meeting the minimum mechanical and chemical properties set forth in this specification may be used.

Note 1—For bolts, studs, or other externally threaded fasteners, to be used at elevated temperatures, refer to Specification A 193/A 193M.

1.2 Two levels of bolting strength are covered, designated Grades BC and BD. Selection will depend upon design and the stresses and service for which the product is to be used.

Note 2—Quenched and tempered alloy steel bolts for structural steel joints up through $1\frac{1}{2}$ in. in diameter are covered in Specification A 490. Alloy steel bolts, studs, and other externally threaded fasteners (that is, heavy hex-structural bolts over $1\frac{1}{2}$ in., hex bolts, anchor bolts, and countersunk bolts) exhibiting similar mechanical properties to bolts conforming to Specification A 490 shall be covered by Grade BD of this specification.

When bolts of Grade BD of this specification are considered for pretentioned applications in excess of 50 % of the bolt tensile strength, the additional requirements of head size, maximum tensile strength, nut size and strength, washer hardness, tests, and inspections contained in Specification A 490 should be carefully considered.

1.3 Nuts are covered in Specification A 563. Unless otherwise specified, the grade and style of nut for each grade of fastener shall be as follows:

Grade of Fastener and Surface Finish	Nut Grade and Style ^A
BC, plain (or with a coating of insufficient thickness to require over-tapped nuts)	C, heavy hex
BC, zinc-coated (or with a coating thickness requiring over-tapped nuts)	DH, heavy hex
BD, all finishes	DH, heavy hex

^ANuts of other grades and styles having specified proof load stresses (Specification A 563, Table 3) greater than the specified grade and style of nut are suitable.

1.4 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.

2. Referenced Documents

2.1 ASTM Standards:

A 153 Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware³

A 193/A193M Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service⁴

A 490 Specification for Structural Bolts, Alloy-Steel, Heat-Treated, 150 ksi Minimum Tensile Strength⁵

A 563 Specification for Carbon and Alloy Steel Nuts⁵

A 751 Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products⁶

B 695 Specification for Coatings of Zinc Mechanically Deposited on Iron and Steel⁷

D 3951 Practice for Commercial Packaging⁸

F 436 Specification for Hardened Steel Washers⁵

¹ This specification is under the jurisdiction of ASTM Committee F16 on Fasteners and is the direct responsibility of Subcommittee F16.02 on Steel Bolts, Nuts, Rivets, and Washers.

Current edition approved March 10, 2003. Published May 2003. Originally approved in 1952. Last previous edition approved in 2001 as A 354-01.

² For ASME Boiler and Pressure Vessel Code applications see related Specification SA-354 in Section II of that Code.

³ Annual Book of ASTM Standards, Vol 01.06.

⁴ Annual Book of ASTM Standards, Vol 01.01.

⁵ Annual Book of ASTM Standards, Vol 01.08.

Annual Book of ASTM Standards, Vol 01.03.
Annual Book of ASTM Standards, Vol 02.05.

⁸ Annual Book of ASTM Standards, Vol 15.09.

^{*}A Summary of Changes section appears at the end of this standard.

F 606 Test Methods for Determining the Mechanical Properties of Externally and Internally Threaded Fasteners, Washers, and Rivets⁵

F 788/F 788M Specification for Surface Discontinuities of Bolts, Screws, and Studs, Inch and Metric Series⁵

F 1470 Guide for Fastener Sampling for Specified Mechanical Properties and Performance Inspection⁵

2.2 ASME Standards:

B1.1 Unified Screw Threads⁹

B18.2.1 Square and Hex Bolts and Screws, Inch Series⁹

B18.24.1 Part Identifying Number (PIN) Code System¹⁰

3. Ordering Information

- 3.1 Orders for bolts and studs (including nuts and accessories) under this specification shall include the following:
 - 3.1.1 ASTM designation and year of issue,
 - 3.1.2 Name of product (that is, bolt or stud),
 - 3.1.3 Grade (that is, BC or BD),
 - 3.1.4 Quantities (number of pieces by size, including nuts),
 - 3.1.5 Size and length,
- 3.1.6 Washers—Specify quantity and size (separate from bolts) (4.3),
- 3.1.7 Zinc Coating—When zinc-coated Grade BC fasteners are required, specify the zinc-coating process required, for example hot-dip, mechanically deposited, or no preference (see 4.4).
- 3.1.8 Other Finishes—Specify other protective finish, if required.
- 3.1.9 Specify if inspection at point of manufacture is required,
 - 3.1.10 Specify if Certification (Section 14) is required, and
- 3.1.11 Specify additional testing (Section 9) or special requirements.
- 3.1.12 For establishment of a part identifying system, see ASME B18.24.1.

4. Materials and Manufacture

- 4.1 The steel shall be made by the open-hearth, electric-furnace, or basic-oxygen process.
- 4.2 All fasteners shall be heat-treated. At the option of the manufacturer, heat treatment may be performed on the raw material, during the manufacturing operations, or after final machining. Heat treatment shall consist of quenching in a liquid medium (except Grade BD sizes 1 ½ in. and smaller shall be quenched in oil) from above the transformation temperature and then temperating by reheating to a temperature of not less than 800°F (427°C) for Grade BC and for Grade BD.
- 4.3 When used, suitable hardened washers shall be quenched and tempered (non-carburized) in accordance with Specification F 436.
 - 4.4 Zinc Coatings, Hot-Dip and Mechanically Deposited:
- ⁹ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036.
- ¹⁰ Available from American Society of Mechanical Engineers (ASME), ASME International Headquarters, Three Park Ave., New York, NY 10016-5990.

- 4.4.1 When zinc-coated fasteners are required, the purchaser shall specify the zinc coating process, for example, hot-dip, mechanically deposited, or no preference.
- 4.4.2 When "hot-dip" is specified, the fasteners shall be zinc coated by the hot-dip process in accordance with the requirements of Class C of Specification A 153.
- 4.4.3 When mechanically deposited is specified, the fasteners shall be zinc-coated by the mechanical-deposition process in accordance with the requirements of Class 50 of Specification B 695.
- 4.4.4 When no preference is specified, the supplier may furnish either a hot-dip zinc coating in accordance with Specification A 153, Class C or a mechanically deposited zinc coating in accordance with Specification B 695, Class 50. Threaded components (bolts and nuts) shall be coated by the same zinc-coating process and the supplier's option is limited to one process per item with no mixed processes in a lot.
- Note 3—When the intended application requires that assembled tension exceeds 50 % of minimum bolt proof load, an anti-galling lubricant may be needed. Application of such a lubricant to nuts and a test of the lubricant efficiency are provided in Supplementary Requirement S1 of Specification A 563 and should be specified when required.
- 4.5 Zinc-coated bolts and nuts shall be shipped in the same container unless specifically requested otherwise by the purchaser.

Note 4—Research conducted on bolts of similar material and manufacture indicates that hydrogen-stress cracking or stress cracking corrosion may occur on hot-dip galvanized Grade BD bolts.

5. Chemical Composition

5.1 All fasteners shall be made from alloy steel conforming to the chemical composition requirements in accordance with Table 1. The steel shall contain sufficient alloying elements to qualify it as an alloy steel.

Note 5—Steel is considered to be alloy, by the American Iron and Steel Institute, when the maximum of the range given for the content of alloying elements exceeds one or more of the following limits: manganese, 1.65 %; silicon, 0.60 %; copper, 0.60 %; or in which a definite range or a definite minimum quantity of any of the following elements is specified or required within the limits of the recognized field of constructional alloy steels: aluminum, chromium up to 3.99 %, cobalt, columbium, molybdenum, nickel, titanium, tungsten, vanadium, zirconium, or any other alloying elements added to obtain a desired alloying effect.

5.2 Product analysis may be made by the purchaser from finished material representing each lot of fasteners. The chemical composition thus determined shall conform to the requirements given in Table 1. Choice of alloy steel composition

TABLE 1 Chemical Requirements

Element	Heat Analysis, %	Product Analysis, %	
Carbon:			
For sizes through 1½ in.	0.30 to 0.53	0.28 to 0.55	
For sizes larger than 1½ in.	0.35 to 0.53	0.33 to 0.55	
Phosphorus, max	0.035	0.040	
Sulfur, max	0.040	0.045	

necessary to ensure meeting the specified mechanical requirements shall be made by the manufacturer and shall be reported to the purchaser for information purposes only.

- 5.3 Application of heats of steel to which bismuth, selenium, tellurium, or lead has been intentionally added shall not be permitted.
- 5.4 Chemical analyses shall be performed in accordance with Test Methods A 751.

6. Mechanical Properties

- 6.1 Fasteners shall not exceed the maximum hardness specified in Table 2. Fasteners less than three diameters in length and studs less than four diameters in length shall have hardness values not less than the minimum nor more than the maximum hardness limits required in Table 2, as hardness is the only requirement.
- 6.2 Fasteners 13/8 in. in diameter or less for Grade BC and 11/4 in. in diameter or less for Grade BD, other than those excepted in 6.1, shall be tested full size and shall conform to the tensile strength and either the proof load or the yield strength requirements in accordance with Table 3.
- 6.3 Fasteners larger than 13/8 in. in diameter for Grade BC and fasteners larger than 11/4 in. in diameter for Grade BD, other than those excepted in 6.1, shall preferably be tested full size and when so tested, shall conform to the tensile strength and either the proof load or yield strength requirements in accordance with Table 3 or Table 4. When equipment of sufficient capacity for full-size testing is not available, or when the length of the fastener makes full-size testing impractical, machined specimens shall be tested and shall conform to the requirements in accordance with Table 5. In the event that fasteners are tested by both full-size and by the machined test specimen methods, the full-size test shall govern if a controversy between the two methods exists.
- 6.4 For fasteners on which both hardness and tension tests are performed, acceptance based on tensile requirements shall take precedence in the event that there is controversy over low readings of hardness tests.

7. Dimensions

- 7.1 *Bolts*—Unless otherwise specified, the bolts shall be Hex Head with dimensions conforming to the latest issue of ASME B18.2.1.
- 7.2 *Studs*—Studs shall have dimensions conforming to those specified by the purchaser.
 - 7.3 Threads:
- 7.3.1 Unless otherwise specified, threads shall be the Unified National Coarse Thread Series as specified in ANSI B1.1, and shall have Class 2 A tolerances.

TABLE 2 Hardness Requirements for Full-Size Fasteners

			Hard	ness	
Size, in.	Grade	Brinell		Rockwell C	
		Minimum	Maximum	Minimum	Maximum
1/4 to 21/2	BC	255	331	26	36
Over 2½	BC	235	311	22	33
1/4 to 21/2	BD	311	363	33	39
Over 21/2	BD	293	363	31	39

- 7.3.2 When specified, threads shall be the Unified National Fine Thread Series, 8-Pitch Thread Series for sizes over 1 in. or 14-Pitch UNS on 1 in. size as specified in ANSI B1.1 and shall have Class 2A tolerances.
- 7.3.3 Unless otherwise specified, bolts and studs to be used with nuts or tapped holes that have been tapped oversize, in accordance with Specification A 563, shall have Class 2A threads before hot dip or mechanically deposited zinc coating. After zinc coating, the maximum limit of pitch and major diameter may exceed the Class 2A limit by the following amount:

Diameter, in.	Oversize Limit, in. (mm) ^A
1/4	0.016
5/16, 3/8	0.017
7/16, 1/2	0.018
%16 to 3/4, incl	0.020
7/8	0.022
1.0 to 11/4, incl	0.024
13/8, 11/2	0.027
13/4to 4.0, incl	0.050

 $^{^{\}rm A}$ These values are the same as the overtapping required for zinc-coated nuts in Specification A 563.

8. Workmanship

8.1 Surface discontinuity limits shall be in accordance with Specification F 788/F 788M.

9. Number of Tests

- 9.1 Testing Responsibility:
- 9.1.1 Each lot shall be tested by the manufacturer prior to shipment in accordance with the lot identification control quality assurance plan in 9.2 through 9.6.
- 9.1.2 When fasteners are furnished by a source other than the manufacturer, the responsible party as defined in 12.1 shall be responsible for ensuring that all tests have been performed and the fasteners comply with the requirements of this specification.
- 9.2 Purpose of Lot Inspection—The purpose of a lot inspection program is to ensure that each lot conforms to the requirements of this specification. For such a plan to be fully effective it is essential that secondary processors, distributors, and purchasers maintain the identification and integrity of each lot until the product is installed.
- 9.3 Lot Processing—All fasteners shall be processed in accordance with a lot identification-control quality assurance plan. The manufacturer, secondary processors, and distributors shall identify and maintain the integrity of each lot of fasteners from raw-material selection through all processing operations and treatments to final packing and shipment. Each lot shall be assigned its own lot-identification number, each lot shall be tested, and the inspection test reports for each lot shall be retained.
- 9.4 Lot Definition—A lot is a quantity of a uniquely identified fastener product of the same nominal size and length produced consecutively at the initial operation from a single mill heat of material and heat treatment lot and processed at one time, by the same process, in the same manner so that statistical sampling is valid. The identity of the lot is maintained throughout all subsequent operations and packaging.