INTERNATIONAL STANDARD

First edition 1998-12-01

Lead sulfide concentrates — Determination of silver and gold contents — Fire assay and flame atomic absorption spectrometric method using scorification or cupellation

Concentrés sulfurés de plomb — Dosage de l'argent et de l'or — Méthode iTeh Spar voie sèche et spectrométrie d'absorption atomique dans la flamme à partir d'une scorification ou d'une coupellation (standards.iteh.ai)

ISO 12740:1998 https://standards.iteh.ai/catalog/standards/sist/b5ef7b36-5e4c-4d7c-b749-4cf3e617cb5c/iso-12740-1998

Contents

1 Scope1
2 Normative references
3 Principle1
4 Reagents
5 Apparatus4
6 Sample
7 Procedure5
8 Expression of results10
9 Precision10
10 Test report
Annex A (normative) Procedure for the preparation and determination of the mass of a predried test portion
Annex B (normative) Trial fusion16
Annex C (normative) Blank determination
Annex D (normative) Flowsheet of the procedure for the acceptance of analytical values for the test samples
Annex E (informative) Derivation of precision equations19
Annex F (informative) Bibliography

© ISO 1998

International Organization for Standardization Case postale 56 • CH-1211 Genève 20 • Switzerland Internet iso@iso.ch

Printed in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

International Standard ISO 12740 was prepared by Technical Committee ISO/TC 183, Copper, lead and zinc ores.

Annexes A to D form an integral part of this International Standard, annexes E and F are for information only.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12740:1998 https://standards.iteh.ai/catalog/standards/sist/b5ef7b36-5e4c-4d7c-b749-4cf3e617cb5c/iso-12740-1998

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 12740:1998 https://standards.iteh.ai/catalog/standards/sist/b5ef7b36-5e4c-4d7c-b749-4cf3e617cb5c/iso-12740-1998

Lead sulfide concentrates — Determination of silver and gold contents — Fire assay and flame atomic absorption spectrometric method using scorification or cupellation

1 Scope

This International Standard specifies a fire assay and flame atomic absorption spectrometric procedure for the determination of silver and gold contents of lead sulfide concentrates.

The method is applicable to the determination of silver and gold in lead sulfide concentrates containing 10 % (m/m m/m) lead.

The method is applicable to silver contents from 200 g/t to 2 000 g/t and gold contents from 0,1 g/t to 25 g/t.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this International standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards/sist/b5ef7b36-5e4c-4d7c-b749-

4cf3e617cb5c/iso-12740-1998

ISO 385-1:1984, Laboratory glassware — Burettes — Part 1: General requirements.

ISO 648:1977, Laboratory glassware — One-mark pipettes.

ISO 1042:1998, Laboratory glassware — One-mark volumetric flasks.

ISO 3696:1987, Water for analytical laboratory use — Specification and test methods.

ISO 4787:1984, Laboratory glassware — Volumetric glassware — Methods for use and testing of capacity.

ISO 9599:1991, Copper, lead and zinc sulfide concentrates — Determination of hygroscopic moisture in the analysis sample — Gravimetric method.

3 Principle

3.1 Scorification

Fire assay fusion of a test portion to produce a lead button, which is scorified to reduce it to a mass of 2 g to 5 g.

Retreatment fusion of the primary fusion and scorification slags to produce a low-silver content lead button which is scorified to approximately 2 g to 5 g.

Dissolution of both lead buttons in nitric acid and filtration of the solution. Dissolution of the filter paper plus gold and determination of silver and gold by flame atomic absorption spectrometry.

3.2 Cupellation

Fire assay fusion of a test portion to produce a lead button, which is cupelled to produce a bead of silver and gold.

Retreatment fusion of the primary fusion slag and spent cupel to produce a second bead of silver and gold.

Dissolution of both beads in dilute nitric acid and filtration of the solution. Dissolution of the filter paper plus gold and determination of silver and gold by flame atomic absorption spectrometry.

4 Reagents

During the analysis, use only reagents of a recognized analytical grade and water that complies with grade 2 of ISO 3696. Wash all glassware with aqua regia followed by water and 25 % ammonia. A chloride-free environment is recommended.

- 4.1 Sodium carbonate, anhydrous
- 4.2 Litharge, assay reagent grade having silver content less than 0,2 g/t, and gold content less than 0,01 g/t
- **4.3** Silica, precipitated grade
- 4.4 Potassium nitrate or sodium nitrate
- 4.5 Flour
- **4.6** Nitric acid (ρ_{20} 1,42 g/ml), chloride content < 0,5 µg/ml.
- 4.7 Nitric acid wash solution. (5 ml/l) (standards.iteh.ai)

To 995 ml of water add 5 ml of nitric acid (4.6). ISO 12740:1998

https://standards.iteh.ai/catalog/standards/sist/b5ef7b36-5e4c-4d7c-b749-4cf3e617cb5c/iso-12740-1998

- **4.8 Nitric acid**, (250 ml/l)
- To 1 500 ml of water carefully add, with stirring, 500 ml of nitric acid (4.6) and cool.
- **4.9** Hydrochloric acid, (ρ_{20} 1,16 g/ml to 1,19 g/ml).
- 4.10 Borax, fused anhydrous sodium tetraborate
- 4.11 Silver metal, minimum 99,99 % purity
- 4.12 Gold metal, minimum 99,99 % purity
- 4.13 Aqua regia

Mix 3 parts of hydrochloric acid (4.9) with 1 part of nitric acid (4.6); prepare freshly as required.

4.14 Ammonia solution

Add 500 ml of ammonia solution (ρ_{20} 0,89 g/ml) to 500 ml of water.

4.15 Sodium chloride

4.16 Standard solutions

NOTE Standard solutions should be prepared at the same ambient temperature as that at which the determinations will be conducted.

4.16.1 Silver standard solutions

4.16.1.1 Silver standard solution, (1 000 µg/ml)

Weigh 0,500 0 g of silver metal (4.11) into a 400 ml beaker, add 100 ml of nitric acid (4.8), cover and heat gently until the metal dissolves. Continue heating to remove oxides of nitrogen. Cool, and transfer to a 500 ml volumetric flask. Dilute to volume with water and mix thoroughly.

This solution should be stored in a brown bottle.

4.16.1.2 Silver standard solution, (100 μ g/ml)

Pipette 20 ml of silver standard solution (4.16.1.1) into a 200 ml volumetric flask, add 40 ml of nitric acid (4.8), dilute to volume and mix thoroughly.

This solution should be stored in a brown bottle.

4.16.1.3 Silver standard solution, (10 μ g/ml)

Pipette 20 ml of silver standard solution (4.16.1.2) into a 200 ml volumetric flask, add 40 ml of nitric acid (4.8), dilute to volume and mix thoroughly.

This solution shall be freshly prepared.

4.16.2 Gold standard solutions

4.16.2.1 Gold standard solution, (1 000 µg/ml)

(standards.iteh.ai) Weigh 0,100 g of gold metal (4.12) into a 50 ml beaker, add 5 ml of aqua regia (4.13), cover and heat to dissolve the gold. Wash and remove the cover, add 0,1 g of sodium chloride (4.15) and evaporate to near dryness (do not allow to go to dryness, as gold may precipitate.) Cool, add 10 ml of hydrochloric acid (4.9), transfer the solution quantitatively to a 100 ml volumetric flask, dilute to volume with water, stopper and mix thoroughly. Store the solution in a brown bottle.

4.16.2.2 Gold standard solution, (100 µg/ml)

Pipette 10 ml of gold standard solution (4.16.2.1) into a 100 ml volumetric flask, add 5 ml of hydrochloric acid (4.9), dilute to volume with water, stopper and mix thoroughly.

4.16.2.3 Gold standard solution, (10 μ g/ml)

Pipette 20 ml of gold standard solution (4.16.2.2) into a 200 ml volumetric flask, add 10 ml of hydrochloric acid (4.9) dilute to volume with water, stopper and mix thoroughly.

This solution shall be freshly prepared.

4.17 Calibration solutions

NOTE Calibration solutions should be prepared at the same ambient temperature as that at which the determinations will be conducted.

4.17.1 Silver calibration solutions

To six 100 ml volumetric flasks, add from a burette (5.6) 0 ml, 5 ml, 10 ml, 20 ml, 30 ml and 40 ml of silver standard solution (4.16.1.3); add 20 ml, 19 ml, 18 ml, 16 ml, 14 ml and 12 ml of nitric acid (4.8), dilute to volume with water and mix thoroughly.

These standards contain 0 µg, 0,5 µg, 1 µg, 2 µg, 3 µg and 4 µg of silver per ml and shall be freshly prepared.

4.17.2 Gold calibration solutions

To six 100 ml volumetric flasks, add from a burette (5.6) 0 ml, 10 ml, 20 ml, 30 ml, 40 ml and 50 ml of gold standard solution (4.16.2.3); add 20 ml of aqua regia solution (4.13), dilute to volume with water and mix thoroughly.

These standards contain 0 μ g, 1 μ g, 2 μ g, 3 μ g, 4 μ g and 5 μ g of gold per ml and shall be freshly prepared.

5 Apparatus

Ordinary laboratory equipment plus the following.

5.1 Volumetric glassware, of class A complying with ISO 385-1, ISO 648 and ISO 1042 and used in accordance with ISO 4787.

5.2 Conventional fire assay equipment

5.2.1 Assay crucible furnace, having a maximum required operating temperature of 1 200°C.

5.2.2 Muffle furnace, having a maximum required operating temperature of 1 100°C; temperature indication, automatic temperature control and controlled air flow are desirable.

5.2.3 Crucibles, made of fire clay, of nominal capacity 300 ml to 500 ml, capable of withstanding corrosion by the sample and fluxes at 1 100° C. The crucible shall be of such a size that the charge does not fill the crucible to a depth of greater than 3/4 the depth of the crucible.

5.2.4 Scorifiers, made of fire clay, of approximately 75 mm diameter, preferably not shallow form.

5.2.5 Cupels, made of magnesium oxide, or bone ash cupels having a nominal capacity of 50 g of molten lead. The inside bottom of the cupel shall be concave.

ISO 12740:1998

5.2.6 Conical mould, made of cast drop, iof sufficient capacity to contain all of the molten lead plus slag from the crucible fusion. 4ct3e617cb5c/iso-12740-1998

5.2.7 Pulverizer

- 5.3 Balances
- 5.3.1 Top loading, capable of being read to 1 mg

5.3.2 Precision analytical, capable of being read to 0,1 mg

5.4 Atomic absorption spectrometer (AAS), equipped with background correction and a glass bead in the spray chamber rather than a flow spoiler

5.5 Filtration equipment

- 5.5.1 Membrane filter cellulose nitrate/cellulose acetate, diameter 25 mm, mesh size 0,45 μ m
- 5.5.2 Vacuum flask, of 250 ml capacity, buchner filter flask having a wide neck
- 5.5.3 Membrane filter funnel, suitable for use with 25 mm membrane filters
- 5.6 Burette, A grade 50 ml capacity, capable of being read to 0,1 ml

6 Sample

6.1 Test sample

Prepare an air-equilibrated test sample in accordance with ISO 9599.

NOTE A test sample is not required if predried test portions are to be used (see annex A).

6.2 Test portion

Taking multiple increments, extract a test portion from the test sample in such a manner that it is representative of the whole contents of the dish or tray. Weigh to the nearest 0,1 mg approximately 10 g of test sample. At the same time as the test portion is weighed, weigh test portions for the determination of hygroscopic moisture in accordance with ISO 9599.

Alternatively, the method specified in annex A may be used to prepare predried test portions directly from the laboratory sample.

7 Procedure

7.1 Number of determinations

Carry out the determinations at least in duplicate, as far as possible under repeatability conditions, on each test sample.

iTeh STANDARD PREVIEW

NOTE Repeatability conditions exist where mutually independent test results are obtained with the same method on identical test material in the same laboratory by the same operator using the same equipment within short intervals of time.

7.2 Trial fusion

<u>ISO 12740:1998</u>

Carry out a trial fusion as described in annex B to ensure that the mass of the lead button is between 28 g and 35 g.

NOTE It is essential that this trial fusion be performed.

7.3 Blank tests

Carry out a duplicate reagent blank test as described in annex C in parallel with each batch of samples fired, using the same quantities of all reagents with the addition of sufficient flour (4.5) to the flux to give a button size of 28 g to 35 g. Omit the test portion and the potassium nitrate.

NOTE If the blank solutions (annex C) exceed 0,05 μ g/ml for gold, the reagents should be checked and the problem rectified. Otherwise the blank is subtracted from the result.

7.4 Charge preparation

Determine the mass of potassium nitrate (4.4) required in the charge as indicated by the trial fusion (see annex B) and include this reagent in the flux mixture (see table 1).

Thoroughly mix the test portion with a flux of the composition specified in table 1.

Flux components		Mass g
Sodium carbonate	(4.1)	30
Litharge	(4.2)	70
Silica	(4.3)	10
Borax	(4.10)	10
Potassium nitrate	(4.4)	-

Table 1 — Recommended masses of flux components for preparation of charges

Place the mixture in the assay crucible (5.2.3).

NOTE 1 The intimate mixing of fluxes and samples is very important. All flux components should be in a finely divided state, with a preferred particle size of less than 0,5 mm.

NOTE 2 The quantities of oxidizing reagent in the mixture are dependent upon the reducing power of the test sample. The trial fusion (see annex B) will determine the mass of potassium nitrate necessary to yield a button of mass 28 g to 35 g. The oxidizing reagent should not be included in a bulk flux. It should be weighed up individually to ensure the repeatability of the mass of the lead button, which, if fusion conditions are uniformly repeated, should agree within ± 1 g of lead, thus decreasing the variability of finishing times of scorification or cupellation.

NOTE 3 If difficulties are experienced in producing repeatable and predictable masses of lead button, a lid for the crucible may be of assistance.

7.5 Primary fusion iTeh STANDARD PREVIEW

Place the crucible in the furnace (5.2.1) preheated to approximately 900 °C.

Slowly raise the furnace temperature to 1 050°C. Maintain this temperature until fusion has been calm for at least 10 min. ISO 12740:1998

https://standards.iteh.ai/catalog/standards/sist/b5ef7b36-5e4c-4d7c-b749-

Pour the fusion into a dry conical mould (5.2.6) taking care to ensure that no loss of lead or slag occurs. Reserve the crucible for retreatment fusion.

Allow the mixture to cool and carefully separate the lead button from the slag. Hammer the lead button as necessary to remove any small particles of adhering slag. Reserve the slag for retreatment.

Weigh the lead button. If the button weighs less than 28 g or more than 35 g, discard the button and slag and repeat the assay using less oxidizing agent or adding flour (see annex B).

NOTE 1 If oil-fired or gas-fired furnaces are used, the fuel should be turned off immediately before opening the furnace.

NOTE 2 To minimize crucible corrosion and build-up of impurities in the lead button, the overall fusion time should not exceed 40 min.

NOTE 3 Buttons weighing less than 28 g show poor collection efficiencies, and those exceeding 35 g contain higher amounts of impurities such as copper and may also cause problems in obtaining the required mass of lead after scorification.

7.6 Selection of recovery procedure

The recovery of the silver and gold in the lead button from the primary fusion can use *either* scorification (see 7.7) *or* cupellation (see 7.8). Individual analysts should select the technique most familiar to their respective laboratories. The final determination of silver and gold by AAS is the same in each case.

7.7.1 General

© ISO

Place the lead button from the primary fusion (see 7.5) in a preheated scorifier containing approximately 0,5 g of silica (4.3) in a muffle furnace (5.2.2) at 900 $^{\circ}$ C.

Allow the scorification to proceed at a muffle temperature of approximately 900 °C with steady air flow until the visible lead melt is approximately 10 mm in diameter (approximately 30 min depending on the mass of the lead button).

Toward the end of the scorification, increase the muffle temperature to 950 °C to decrease the viscosity for clean pouring. The required lead mass is 2 g to 5 g.

Pour the mixture into a dry conical mould (5.2.6), allow to cool, remove and weigh the lead button. Reserve the slag for retreatment fusion. Discard the scorifier.

7.7.2 Retreatment fusion

Place the slags from the primary fusion (see 7.5) and the scorification (see 7.7.1) in a grinder (5.2.7) and pulverize for a period of about 20 s. Thoroughly clean the pulverizer by grinding a silver- and gold-free medium between each sample.

Intimately mix the pulverized slag with a flux of the following composition:

- litharge (4.2) 50 g;
 - sodium carbonate (4.1) 50 geh STANDARD PREVIEW
- silica (4.3) 50 g;
- borax (4.10) 50 g;

<u>ISO 12740:1998</u>

(standards.iteh.ai)

https://standards.iteh.ai/catalog/standards/sist/b5ef7b36-5e4c-4d7c-b749-

- flour (4.5) sufficient to produce a 28 g to 35 g lead button (usually approximately 4 g).

Place the mixture into the original assay crucible from 7.5.

Carry out a fusion as detailed in 7.5.

Pour the fusion into a dry conical mould (5.2.6) taking care that no loss of lead occurs. Discard the crucible and slag.

7.7.3 Scorification

Place the lead button from the retreatment fusion, 7.7.2, in a new preheated scorifier containing approximately 0,5 g of silica (4.3) in the muffle furnace (5.2.2) at 950 °C. The button is added to the scorifier in the muffle furnace.

Proceed as in 7.7.1. Discard the slag and scorifier.

7.8 Cupellation

7.8.1 General

Place the lead button from the primary fusion, 7.5, into a preheated cupel in a muffle furnace (5.2.2) at 900 °C. The button is added to the cupel in the muffle furnace.

Allow the cupellation to proceed at a lower muffle temperature of approximately 860 °C with steady air flow until the visible lead melt is approximately 10 mm in diameter (approximately 30 min depending on the mass of lead button).

Raise the muffle furnace temperature to 900 °C to finish the cupellation.

Remove the cupel and allow to cool. Take the silver and gold bead and remove any attached cupel material with a brush. Weigh the bead. Reserve the cupel for retreatment fusion.

7.8.2 Retreatment fusion

Place the slag from the primary fusion, 7.5, and the cupel from the recovery procedure, 7.8.1 in a grinder (5.2.7) and pulverize for about 20 s to reduce the material to minus 150 μm. Longer grinding may cause caking of the material.

Thoroughly clean the pulverizer by grinding a silver- and gold-free medium between each sample.

Intimately mix the pulverized slag and cupel with a flux of the following composition:

- Litharge (4.2) 50 g;
- Sodium carbonate (4.1) 50 g;
- Silica (4.3) 50 g;
- Borax (4.10) 50 g;
- Flour (4.5) sufficient to produce a 28 to 35 g lead button (usually approximately 4 g).

Place the mixture into the original assay crucible from 7.5.

Carry out a fusion as detailed in 7.5.

Pour the fusion into a dry conical mould (5.2.6), taking care that no loss of lead occurs. Discard the crucible and the slag.

iTeh STANDARD PREVIEW 7.8.3 Cupellation

Place the lead button from the retreatment fusion, 7.8.2, into a new preheated cupel in a muffle furnace (5.2.2) at 900 °C. The button is added to the cupel in the furnace.

ISO 12740:1998

Proceed as in 7.8.1. Discard the cupel. https://standards.iteh.ai/catalog/standards/sist/b5ef7b36-5e4c-4d7c-b749-

7.9 Treatment of the lead buttons or silver/gold beads

Place either the cleaned lead buttons (see 7.7.1 and 7.7.3) into one 250 ml beaker or the silver and gold beads (see 7.8.1 and 7.8.3) into one 250 ml beaker.

Add 100 ml of nitric acid (4.8), cover and heat to dissolve all the lead or the bead. Boil gently to remove oxides of nitrogen.

NOTE Any black material remaining after the button or bead has been dissolved is due to precious metals other than silver.

Remove the beaker from the hotplate, allow to cool slightly, wash and remove cover, and vacuum filter through a 25 mm, 0,45 µm filter (5.5.1) into a 250 ml buchner flask (5.5.2). Use approximately 50 ml of hot nitric acid (4.7) to wash the beaker and filter paper. Give one 10 ml wash with warm ammonia solution (4.14) to dissolve any traces of silver chloride and one water wash.

Remove the top section of the filter funnel and carefully wash around the base of the top section of the filter funnel into the original 250 ml beaker to remove any adhering particles of gold. Transfer the filter paper to the original 250 ml beaker, add 2 ml of nitric acid (4.6), place on a low heat hotplate and evaporate to near dryness. Do not bake. Reserve the beaker for the determination of gold.

7.10 Determination of silver in the test solution by flame atomic absorption spectrometry

Transfer the filtrate (see 7.9) quantitatively to a 500 ml volumetric flask using nitric acid (4.7). Dilute to volume and mix thoroughly.

Dilute by pipetting 25 ml of the above test solution into a 250 ml volumetric flask, add 25 ml of nitric acid (4.8). Dilute to volume with water and mix thoroughly.