

SLOVENSKI STANDARD kSIST-TS FprCEN/TS 15959:2009

01-julij-2009

; bc1]`U!'8c`c Yj Ub1Y'Y_glfU\]fUbY[UZcgZcf1Ufla YhcXU' "&L

Fertilizers - Determination of extracted phosphorus (Method 3.2)

Düngemittel - Bestimmung von Phosphor in den Extrakten

Engrais - Dosage du phosphore extrait

Ta slovenski standard je istoveten z: FprCEN/TS 15959

ICS:

65.080 Gnojila Fertilizers

kSIST-TS FprCEN/TS 15959:2009 en,fr,de

kSIST-TS FprCEN/TS 15959:2009

TECHNICAL SPECIFICATION SPÉCIFICATION TECHNIQUE TECHNISCHE SPEZIFIKATION

FINAL DRAFT FprCEN/TS 15959

June 2009

ICS 65.080

English Version

Fertilizers - Determination of extracted phosphorus (Method 3.2)

Engrais - Dosage du phosphore extrait

Düngemittel - Bestimmung von Phosphor in den Extrakten

This draft Technical Specification is submitted to CEN members for formal vote. It has been drawn up by the Technical Committee CEN/TC 260.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

Warning: This document is not a Technical Specification. It is distributed for review and comments. It is subject to change without notice and shall not be referred to as a Technical Specification.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

Con	Page	
Forew	vord	
1	Scope	4
2	Normative references	
3	Terms and definitions	4
4	Principle	4
5	Sampling and sample preparation	4
6	Reagents	5
7	Apparatus	6
8	Procedure	6
9	Calculation and expression of the result	7
10	Precision	8
11	Test report	9
Annex	x A (informative) Statistical results of the inter-laboratory test	10
Biblio	graphy	12

Foreword

This document (FprCEN/TS 15959:2009) has been prepared by Technical Committee CEN/TC 260 "Fertilizers and liming materials", the secretariat of which is held by DIN.

This document is currently submitted to the Formal Vote.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association.

1 Scope

This document specifies a method for the determination of phosphorus in fertilizer extracts.

The method is applicable to all extracts of fertilizers for the determination of the different forms of phosphorus as phosphorus soluble in mineral acids, water soluble phosphorus, phosphorus soluble in solutions of ammonium citrate, phosphorus soluble in 2 % citric acid and phosphorus soluble in 2 % formic acid.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EN 1482-2, Fertilizers and liming materials — Sampling and sample preparation — Part 2: Sample preparation

EN 12944-1:1999, Fertilizers and liming materials and soil improvers — Vocabulary— Part 1: General terms

EN 12944-2:1999, Fertilizers and liming materials and soil improvers — Vocabulary— Part 2: Terms relating to fertilizers

3 Terms and definitions

For the purposes of this document, the terms and definitions given in EN 12944-1:1999 and EN 12944-2:1999 apply.

4 Principle

After possible hydrolysis, phosphorus is precipitated in an acid media in the form of quinoline phosphomolybdate.

After filtering and washing, the precipitate is dried at 250 °C and weighed.

In the above mentioned conditions no interfering action is exerted by the compounds likely to be found in the solution (mineral and organic acids, ammonium ions, soluble silicates, etc.) if a reagent based on sodium molybdate or ammonium molybdate is used in the precipitation.

5 Sampling and sample preparation

Sampling is not part of the method specified in this document. A recommended sampling method is given in EN 1482-1.

Sample preparation shall be carried out in accordance with EN 1482-2. Grinding of the laboratory sample is recommended for homogeneity reasons.

6 Reagents

- **6.1 Water**, distilled or demineralized.
- **6.2** Concentrated nitric acid, ρ = 1,40 g/ml.

6.3 Preparation of reagents

6.3.1 Preparation of the reagent based on sodium molybdate

Solution A: Dissolve 70 g of sodium molybdate dihydrate in 100 ml of distilled water.

Solution B: Dissolve 60 g of citric acid monohydrate in 100 ml of distilled water and add 85 ml concentrated nitric acid (6.2).

Solution C: Stir solution A into solution B to obtain solution C.

Solution D: To 50 ml of distilled water, add 35 ml of concentrated nitric acid (6.2), then 5 ml of freshly distilled quinoline. Add this solution to solution C, mix thoroughly and leave standing overnight in the dark. After this make up to 500 ml with distilled water, mix again, and filter through a sintered glass funnel (7.7).

6.3.2 Preparation of the reagent based on ammonium molybdate

Solution A: In 300 ml of distilled water, dissolve 100 g of ammonium molybdate while heating gently and stirring from time to time.

Solution B: Dissolve 120 g of citric acid monohydrate in 200 ml of distilled water, add 170 ml of concentrated nitric acid (6.2).

Solution C: Add 10 ml of freshly distilled quinoline to 70 ml of concentrated nitric acid (6.2).

Solution D: Slowly pour, stirring well, solution A into solution B. After thoroughly mixing add solution C to this mixture and make up to 1 l. Leave standing for two days in a dark place and filter through a sintered glass funnel (7.7).

The reagents 6.3.1 and 6.3.2 may be used in the same way; both shall be kept in the dark in stoppered polyethylene bottles.

7 Apparatus

- 7.1 Standard laboratory equipment.
- **7.2 500 ml Erlenmeyer flask**, with a wide neck.
- **7.3** Graduated pipettes, of 10 ml, 25 ml and 50 ml.
- 7.4 Filter crucible, with porosity of 5 µm to 20 µm.
- 7.5 Buchner flask.
- **7.6 Drying oven**, regulated at (250 ± 10) °C.
- 7.7 Sintered glass funnel, with porosity of 5 μm to 20 μm.

8 Procedure

8.1 Treatment of the solution

With a pipette (7.3), take an aliquot part of fertilizer extract (see Table 1) containing about 0,01 g of P_2O_5 and place it in the Erlenmeyer flask (7.2). Add 15 ml of concentrated nitric acid¹ (6.2) and dilute with water to about 100 ml.

Table 1 — Determination of the aliquot parts of the phosphate solutions

% P ₂ O ₅ in the fertilizer	% P in the fertilizer	Sample for analysis g	Dilution to ml	Sample ml	Dilution to ml	Sample to be precipitated ml	Quinoline phospho- molybdate conversion factor (F), in % P ₂ O ₅	Quinoline phospho- molybdate conversion factor (F'), in % P
5 to 10	2,2 to 4,4	1 5	500 500	-	-	50 10	32,074 32,074	13,984 13,984
10 to 25	4,4 to 11,0 {	1 5	500 500	- 50	- 500	25 50	64,148 64,148	27,968 27,968
> 25	> 11 {	1 5	500 500	- 50	- 500	10 25	160,370 128,296	69,921 55,937

6

¹ 21 ml when the solution to be precipitated contains more than 15 ml of citrate solution (neutral citrate, Petermann or Joulie alkaline citrate).

8.2 Hydrolysis

If the presence of metaphosphates, pyrophosphates or polyphosphates is suspected in the solution, carry out the hydrolysis as follows.

Bring the content of the Erlenmeyer flask (7.2) to the boil slowly and keep at this temperature until hydrolysis is completed. This usually takes 1 h. Care shall be taken to avoid losses by splashing and excessive evaporation which could reduce the initial volume by more than half, by fitting a reflux condenser. After hydrolysis make up to the initial volume with water (6.1).

8.3 Weighing the crucible

Dry the filter crucible (7.4) for at least 15 min in the drying oven (7.6) set at (250 \pm 10) °C. Cool in a desiccator and weigh.

8.4 Precipitation

Heat he acid solution contained in the Erlenmeyer flask (7.2) until it begins to boil. Then start the precipitation of the quinoline phosphomolybdate by adding 40 ml of the precipitating reagent (6.3.1 or 6.3.2)² drop by drop, stirring continuously. Place the Erlenmeyer flask in a steam bath, leave it there for 15 min, shaking it from time to time. The solution may be filtered immediately or after it has cooled down.

8.5 Filtering and washing

Filter the solution under vacuum by decantation. Wash the precipitate in the Erlenmeyer flask(7.2) with 30 ml of water (6.1). Decant and filter the solution. Repeat this process five times. Quantitatively transfer the rest of the precipitate into the crucible washing it with water. Wash four times with 20 ml of water, allowing the liquid to drain from the crucible before each addition. Dry the precipitate thoroughly.

8.6 Drying and weighing

Wipe the outside of the crucible with a filter paper. Place this crucible in a drying oven (7.6) and keep it there until its mass remains constant, at a temperature of 250 °C (usually 15 min); leave it to cool in the desiccator at ambient temperature and weigh rapidly.

8.7 Blank test

For each series of determinations, carry out a blank test using only the reagents and solvents in the proportions used in the extraction (citrate solution, etc.) and allow for them in the calculation of the final result.

8.8 Verification

Carry out the determination using an aliquot part of a potassium dihydrogen phosphate solution containing 0.01 g of P_2O_5 .

9 Calculation and expression of the result

If the samples for analysis and dilutions are used according to Table 1, calculate the mass fraction, w_P , in percent according to equation (1).

To precipitate phosphate solutions containing more than 15 ml of citrate solution (neutral, Petermann or Joulie) which have been acidified with 21 ml of concentrated nitric acid (see footnote to 6.1) use 80 ml of the precipitating reagent.