

Designation: D 347 - 97

Standard Tables for Volume and Specific Gravity Correction for Creosote, Creosote-Coal Tar Solution and Coal Tar ^{1,2}

This standard is issued under the fixed designation D 347; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 These tables have been prepared by the National Institute of Standards and Technology to meet a demand from the wood preserving industry for convenient tables for reducing creosote volumes to the basis of 100°F (38°C) and for reducing specific gravity observations to the same temperature. Table 1 and Table 2 give in parallel columns corrections factors for creosote and for mixtures of creosote and coal tar (up to 50 % tar) designated as solution, and for coal tar. They are based on density determinations made on a selected range of domestic coke-oven tars.

1.2 Table 2 shows the volume occupied at 100°F (38°C) by a quantity of oil occupying a unit volume at the indicated temperature; for example, 1 gal of creosote measured at 120°F (49°C) will have a volume of 0.9921 gal at 100°F (38°C); thus, if the volume of creosote at 120°F (49°C) equals 10 000 gal, then the volume at 100°F (38°C) equals 10 000 times 0.9921 or 9921 gal.

1.3 Table 2 gives corrections for observed specific gravity which are simply made by adding them to the observed values for temperatures above 100°F (38°C) and subtracting them for temperatures below 100°F (38°C).

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Keywords

2.1 coal tar; creosote; specific gravity; volume

ASTM D347-97

https://standards.iteh.aj/catalog/standards/sist/c96a03cb-43c4-4c52-a35d-e5213502c6bc/astm-d347-97

¹ These tables are under the jurisdiction of ASTM Committee D07 on Wood and are the direct responsibility of Subcommittee D07.06 on Treatments for Wood Products.

Current edition approved Oct. 10, 1997. Published February 1998. Originally published as D 347 – 32 T. Last previous edition D 347 – 33 (1992)¹.

² These tables have been adopted as standard by the American Wood Preservers' Association and by the American Railway Engineering Association; they are the outcome of a Joint Conference Committee representing these associations and the American Society for Testing and Materials.

TABLE 1 Volume Correction Table for Creosote, Creosote-Coal Tar Solution (up to 50 % Tar), and Coal Tar (Coke-Oven Tars)

The observed volume is to be multiplied by the factor corresponding to the observed temperature.

Observed Temper- ature, °F	Volume at 100°F Occu- pied by Unit Volume at Indicated Temperature			Observed Temper-	Volume at 100°F Occu- pied by Unit Volume at Indicated Temperature			Observed Temper-	Volume at 100°F Occu- pied by Unit Volume at Indicated Temperature		
	Creo- sote	Solu- tion	Coal Tar	ature,° F	Creo- sote	Solu- tion	Coal Tar	ature,° F	Creo- sote	Solu- tion	Coal Tar
220	0.9526	0.9542	0.9594	180	0.9684	0.9696	0.9732	140	0.9742	0.9850	0.9867
219	0.9530	0.9546	0.9597	179	0.9687	0.9700	0.9735	139	0.9846	0.9853	0.9870
218	0.9534	0.9550	0.9600	178	0.9691	0.9704	0.9739	138	0.9850	0.9857	0.987
217	0.9538	0.9554	0.9604	177	0.9695	0.9708	0.9742	137	0.9853	0.9861	0.987
216	0.9542	0.9557	0.9607	176	0.9699	0.9712	0.9745	136	0.9857	0.9865	0.988
215	0.9546	0.9561	0.9611	175	0.9703	0.9715	0.9749	135	0.9861	0.9868	0.988
214	0.9550	0.9565	0.9614	174	0.9707	0.9719	0.9752	134	0.9865	0.9872	0.988
213	0.9554	0.9569	0.9618	173	0.9711	0.9723	0.9756	133	0.9869	0.9876	0.989
212	0.9558	0.9573	0.9621	172	0.9715	0.9727	0.9759	132	0.9873	0.9880	0.989
211	0.9561	0.9577	0.9625	171	0.9719	0.9731	0.9762	131	0.9877	0.9884	0.989
210	0.9565	0.9581	0.9628	170	0.9723	0.9735	0.9766	130	0.9881	0.9887	0.990
209	0.9569	0.9584	0.9632	169	0.9727	0.9738	0.9769	129	0.9885	0.9891	0.990
208	0.9573	0.9588	0.9635	168	0.9731	0.9742	0.9772	128	0.9889	0.9895	0.990
207	0.9577	0.9592	0.9639	167	0.9735	0.9746	0.9776	127	0.9893	0.9899	0.991
206	0.9581	0.9596	0.9642	166	0.9739	0.9750	0.9779	126	0.9897	0.9902	0.991
205	0.9585	0.9600	0.9646	165	0.9743	0.9754	0.9783	125	0.9901	0.9906	0.991
204	0.9589	0.9604	0.9649	164	0.9747	0.9758	0.9786	124	0.9905	0.9910	0.992
203	0.9593	0.9608	0.9652	163	0.9751	0.9762	0.9789	123	0.9909	0.9914	0.992
202	0.9597	0.9611	0.9656	162	0.9754	0.9765	0.9793	122	0.9913	0.9917	0.992
201	0.9601	0.9615	0.9659	161	0.9758	0.9769	0.9796	121	0.9917	0.9921	0.993
200	0.9605	0.9619	0.9663	160	0.9762	0.9773	0.9800	120	0.9921	0.9925	0.993
199	0.9609	0.9623	0.9666	159	0.9766	0.9777	0.9803	119	0.9925	0.9929	0.993
198	0.9612	0.9627	0.9670	158	0.9770	0.9781	0.9806	118	0.9929	0.9932	0.994
197	0.9616	0.9631	0.9673	157	0.9774	0.9785	0.9810	117	0.9932	0.9936	0.994
196	0.9620	0.9634	0.9677	156	0.9778	0.9788	0.9813	116	0.9936	0.9940	0.994
195	0.9624	0.9638	0.9680	155	0.9782	0.9792	0.9816	115	0.9940	0.9944	0.995
194	0.9628	0.9642	0.9684	154	0.9786	0.9796	0.9820	114	0.9944	0.9948	0.995
193	0.9632	0.9646	0.9687	153	0.9790	0.9800	0.9823	113	0.9948	0.9951	0.995
192 UPS: 191	0.9636 0.9640	0.9650 0.9654	0.9690 0.9694	and 152 S/S1 151	0.9794 0.9789	0.9804	0.9827 0.9830	30-912/13. 111	0.9952 0.9956	0.9955) 4 0.9959	0.996 0.996
190	0.9644	0.9658	0.9697	150	0.9802	0.9811	0.9833	110	0.9960	0.9962	0.996
189	0.9648	0.9662	0.9701	149	0.9802	0.9815	0.9837	109	0.9964	0.9966	0.997
188	0.9652	0.9665	0.9701	148	0.9810	0.9819	0.9840	108	0.9968	0.9970	0.997
187	0.9656	0.9669	0.9704	147	0.9814	0.9823	0.9844	107	0.9972	0.9974	0.997
186	0.9660	0.9673	0.9711	146	0.9818	0.9827	0.9847	106	0.9976	0.9978	0.998
185	0.9664	0.9677	0.9714	145	0.9822	0.9830	0.9850	105	0.9980	0.9981	0.998
184	0.9668	0.9681	0.9718	144	0.9826	0.9834	0.9854	104	0.9984	0.9985	0.998
183	0.9672	0.9685	0.9721	143	0.9830	0.9838	0.9857	103	0.9988	0.9989	0.999
182	0.9676	0.9688	0.9725	142	0.9834	0.9842	0.9860	102	0.9992	0.9992	0.999
181	0.9680	0.9692	0.9728	141	0.9838	0.9846	0.9864	101	0.9996	0.9996	0.999
	3.0000	0.0002	0.0.20		0.0000	0.00.0	0.0001	100	1.0000	1.0000	1.000

The portion of the table below should not be used unless the oil is entirely free from $\operatorname{crystals}^A$

Observed Temper- ature, °F	Volume at 100°F Occu- pied by Unit Volume at Indicated Temperature			Observed Temper-	Volume at 100°F Occu- pied by Unit Volume at Indicated Temperature			Observed Temper-	Volume at 100° Occu- pied by Unit Volume at Indicated Temperature		
	Creo- sote	Solu- tion	Coal Tar	ature,° F	Creo- sote	Solu- tion	Coal Tar	ature,° F	Creo- sote	Solu- tion	Coal Tar
99	1.0004	1.0004	1.0003	84	1.0063	1.0062	1.0053	69	1.0122	1.0116	1.0103
98	1.0008	1.0008	1.0007	83	1.0067	1.0066	1.0056	68	1.0126	1.0120	1.0106
97	1.0012	1.0011	1.0010	82	1.0071	1.0070	1.0060	67	1.0130	1.0124	1.0109
96	1.0016	1.0015	1.0013	81	1.0075	1.0074	1.0063	66	1.0134	1.0127	1.0112
95	1.0020	1.0019	1.0017	80	1.0079	1.0078	1.0066	65	1.0138	1.0131	1.0116
94	1.0024	1.0022	1.0020	79	1.0083	1.0079	1.0070	64	1.0142	1.0135	1.0119
93	1.0028	1.0026	1.0023	78	1.0087	1.0082	1.0073	63	1.0146	1.0138	1.0122