INTERNATIONAL STANDARD

ISO 10889-1

First edition 1997-12-15

Tool holders with cylindrical shank —

Part 1:

Cylindrical shank, location bore — Technical delivery conditions

Partie 1: Queue cylindrique, alésage de réception — Conditions techniques de livraisona r d.s.iteh.ai)

ISO 10889-1:1997 https://standards.iteh.ai/catalog/standards/sist/dec64e7d-7a52-4276-813d-8c3ebebb48ca/iso-10889-1-1997

ISO 10889-1:1997(E)

Small tools.

ISO 10889 consists of the following parts, under the general title *Tool holders with cylindrical shank*:

- ANDARD PREVI Part 1: Cylindrical shank, location bore — Technical delivery conditions
- Part 2: Type A, shanks for tool holders of special designs
- Part 3: Type B with rectangular radial seat SO 10889-1:1997 atalog/standards/sist/dec64e7d-7a52-4276-813d-
- Part 4: Type C with rectangular axial seat bb48ca/iso-10889-1-1997
- Part 5: Type D with more than one rectangular seat
- Part 6: Type E with cylindrical seat
- Part 7: Type F with taper seat
- Part 8: Type Z, accessories

© ISO 1997

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case postale 56 • CH-1211 Genève 20 • Switzerland Internet central@iso.ch X.400 c=ch; a=400net; p=iso; o=isocs; s=central

For reword tzerland

ISO (the International Organization for Standardization) is a worldwide federation of national standards podies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International

Tool holders with cylindrical shank —

Part 1:

Cylindrical shank, location bore — Technical delivery conditions

1 Scope

ISO 10889 applies to tool holders with cylindrical shank for machine tools with non-rotating tools, preferably for turning machines.

This part of ISO 10889 specifies the interchangeability dimensions of the cylindrical shank and location bore, and the dimensions related to data medium. It also specifies the technical delivery conditions of the tool holders.

2 Normative references iTeh STANDARD PREVIEW

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 10889. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 10889 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid international Standards.

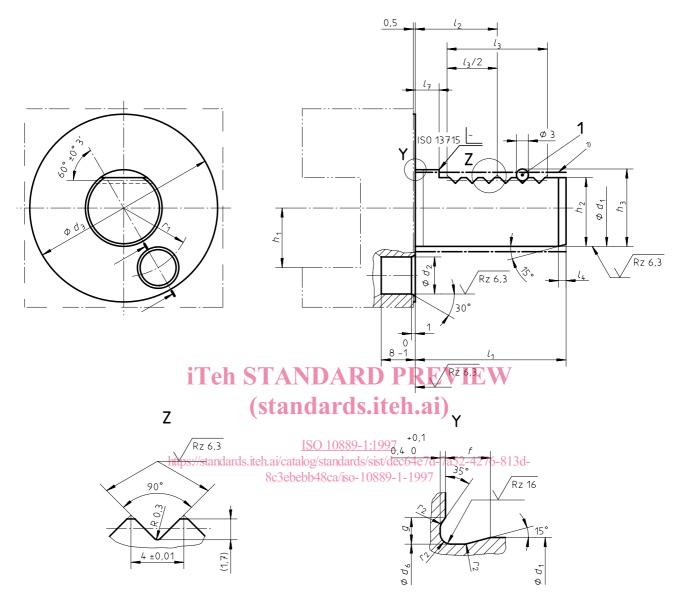
8c3ebebb48ca/iso-10889-1-1997

ISO 1629:1995, Rubber and latices — Nomenclature.

ISO 2768-1:1989, General tolerances — Part 1: Tolerances for linear and angular dimensions without individual tolerance indications.

3 Cylindrical shank

3.1 Dimensions


The dimensions of cylindrical shank are shown in figure 1 and given in table 1; the geometrical tolerances are shown in figure 2.

Unspecified details shall be chosen appropriately.

General tolerances: ISO 2768-1 - m

ISO 10889-1:1997(E) © ISO

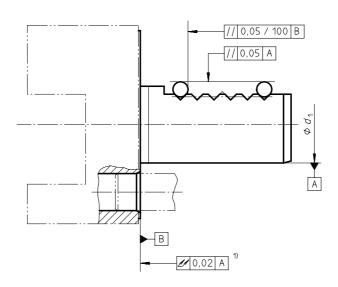
Dimensions in millimetres, surface roughness in micrometres

Key

- 1 Measuring roll, tolerance \pm 0,01 mm
- 1) See 6.3.2.

Figure 1 — Cylindrical shank of tool holder

Table 1 — Dimensions of cylindrical shank


Dimensions in millimetres

d ₁	/1	d ₂		d ₃	d ₆	f	g	h ₁	h ₂	h ₃	12
					0						
h6	± 0,3	nom.	tol.		- 0,1			max.	± 0,1	± 0,1	± 0,05
16	32	8		40	15,4	2	1,7	12	15	16,92	12,7
20	40	10	H6	50	19,1	2,4	2	16	18	19,92	21,7
25	48	10		58	24,1	2,4	2	16	23,5	25,42	21,7
30	55	14		68	29,1	2,4	2	20	27	28,92	29,7
40	63	14		83	38,7	3,7	2,8	25	36	37,92	29,7
50	78	16	H8	98	48,7	3,7	2,8	32	45	46,92	35,7
60	94	16		123	58,7	4,3	3,7	32	55	56,92	43,7
80	124	20		158	78,7	4,3	3,7	40	72	73,92	59,7

d ₁	/3	14	7	<i>r</i> ₁	r ₂	O-ring
		+1				
h6	min.	0		± 0,02		
16	16	2	3,5	14,5	0,6	15 × 1,5
20	24	2	7	18	0,8	18,77 × 1,78
		_ ~				
30	40	leh 25 l A	NDARD	P 25	L V 0,8	28,3 × 1,78
40	40	3(cta	ndards i	teh ³² i)	1,2	37,77 × 2,62
50	48	3	8	37	1,2	47,29 × 2,62
60	56	4	ISO 110889-1:19	₉₉₇ 48	1,6	$56,74 \times 3,53$
80	80 https://	standard 4 .iteh.ai/ca	ıtalog/stalqards/sis	t/dec64 65 -7a52-	4276-8 1 3 6 -	75,79 × 3,53

8c3ebebb48ca/iso-10889-1-1997

Dimensions in millimetres

1) Non convex

Figure 2 — Cylindrical shank — Geometrical tolerances

ISO 10889-1:1997(E) © ISO

3.2 Designation

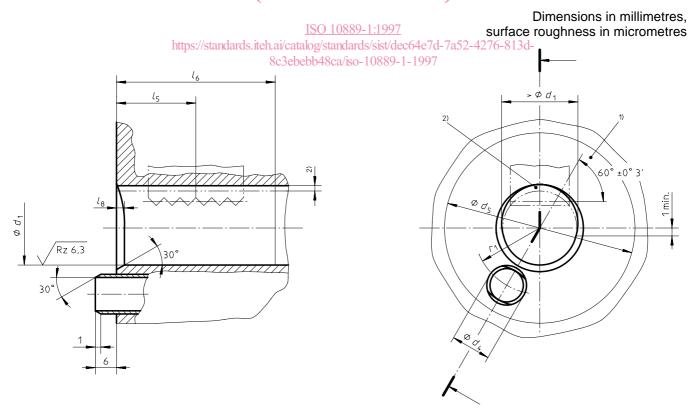
A cylindrical shank in accordance with this part of ISO 10889 shall be designated by

- a) "Cylindrical shank";
- b) reference to this part of ISO 10889, i.e. ISO 10889-1;
- c) nominal diameter, d_1 , in millimetres;
- d) nominal length, l₁, in millimetres.

EXAMPLE

A cylindrical shank with a nominal diameter $d_1 = 40$ mm and a nominal length $l_1 = 63$ mm is designated as follows:

Cylindrical shank ISO 10889-1 - 40×63


4 Location bore

4.1 Dimensions

The dimensions of location bore are shown in figure 3 and given in table 2; the geometrical tolerances are shown in figure 4.

Unspecified details shall be chosen appropriately ARD PREVIEW

General tolerances: ISO 2768-1 - m (standards.iteh.ai)

- 1) Contact surface
- 2) Clearance

Figure 3 — Location bore

Table 2 — Dimensions of the location bore

Dimensions in millimetres

d ₁	d ₄		d ₅	l ₅	<i>l</i> 6	<i>l</i> 8	<i>r</i> ₁
H6	nom.	tol.	min.	± 0,05			± 0,02
16	8		42	13	32	2,1	14,5
20	10	f6	52	22	40	2,5	18
25	10		60	22	48	2,5	21
30	13,95		70	30	55	2,5	25
40	13,95		85	30	63	4	32
50	15,9	± 0,02	100	36	78	4	37
60	15,9		125	44	94	6	48
80	19,9		160	50	124	6	65

Dimensions in millimetres

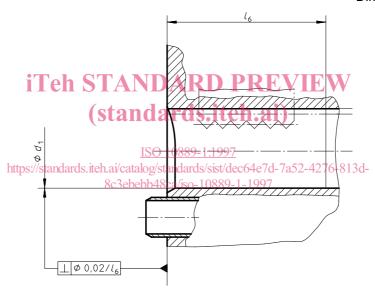


Figure 4 — Location bore — Geometrical tolerances

4.2 Designation

A location bore in accordance with this part of ISO 10889 shall be designated by

- a) "Location bore";
- b) reference to this part of ISO 10889, i.e. ISO 10889-1;
- c) nominal diameter.

EXAMPLE

A location bore with nominal diameter $d_1 = 40$ mm is designated as follows:

Location bore ISO 10889-1 - 40

ISO 10889-1:1997(E) © ISO

5 Tool holder with data medium

Dimensions related to data medium are shown in figure 5 and given in tables 3 and 4.

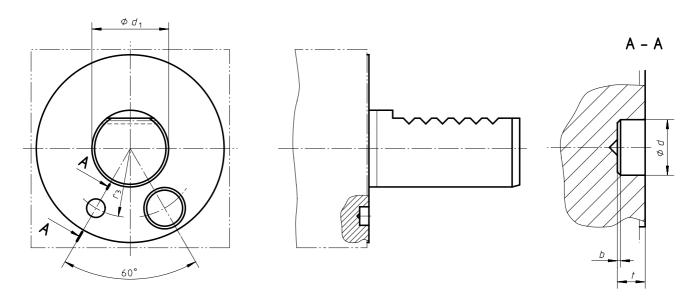


Figure 5 - Fitting position of the data medium/
(standards.iteh.ai)

Table 3 — Fitting dimensions of the data medium https://standards.iteh.ai/catalog/standards/sist/dec64e7d-7a52-4276-813

8c3ebebb48ca/iso-10889-1-1997 Dimensions in millimetres

<i>b</i> _{max}	0,3 × 45° or R 0,3 1)					
d	+0,09 0					
t	4,6 +0,2					
1) At the manufacturer's discretion						

Table 4 — Dimensions of the fitting position of the data medium

Dimensions in millimetres

<i>d</i> ₁		20	25	30	40	50	60	80
<i>r</i> 3	± 0,1	18	21	25	32	37	48	65

6 Technical delivery conditions

6.1 Designation

A tool holder for machine tools in accordance with this ISO 10889 shall be designated by

- a) "Tool holder":
- b) reference to the corresponding part of ISO 10889 (ISO 10889-2 to ISO 10889-7);
- c) dash;
- d) type;
- e) dash;
- f) cylindrical shank diameter d₁, in millimetres;
- g) multiplication sign, x;
- h) nominal height h_1 , in millimetres, or characteristic dimensions for the location bore of the tool holder;
- i) multiplication sign, x;
- j) for type B tool holders, dimension l_2 , in millimetres;
- k) for tool holders with hardened contact surface, the letter H;
- I) for tool holders with data medium, a dash and the letter D.

EXAMPLE

https://standards.iteh.ai/catalog/standards/sist/dec64e7d-7a52-4276-813d-8c3ebebb48ca/iso-10889-1-1997

6.2 Material

Material of cylindrical shank and tool holder is at the discretion of the manufacturer. The tensile strength of the material shall be at least 900 N/mm².

Material of O-rings: FPM in accordance with ISO 1629.

6.3 Design

6.3.1 Normal design

Normal design are tool holders without data medium and without hardened contact surface.

6.3.2 Surface

The surface hardness of hardened cylindrical shank, is (56^{+4}_{0}) HRC, and the depth of hardening is at least 0,5 mm.

6.4 Scope of delivery

The scope of delivery of tool holders does not include O-rings. In case O-rings are included in the scope of delivery, it shall be mentioned in the designation (O for O-rings).