
INTERNATIONAL
STANDARD 101654

First edition
1992-09-O 1

AMENDMENT 3
19984245

Information technology - Open Systems
Interconnection - Structure of
management information: Guidelines for
the definition of managed objects

AMENDMENT 3: Guidelines for the use of Z in
formalizing the behaviour of managed objects

Technologies de I�informa tion - lnterconnexion de syst&mes owe& -
Structures des informations de gestion: Partie 4: Principes directeurs pour
la dgfinition des objets g&k

AMENDEMENT 3: Principes directeurs pour I�utilisation de 2 dans la
formalisation du comporlement de l’objet g&6

Reference number
ISO/I EC 10165-4: 1992iAmd.3: 1998(E)

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10165-4:1992/Amd 3:1998
https://standards.iteh.ai/catalog/standards/sist/b7c07db7-0eb3-425f-a52d-

c3575de2fcf5/iso-iec-10165-4-1992-amd-3-1998

ISO/IEC 101654:1992/Amd.3:1998(E)

Contents

Page

1) Table of contents ..,...-...

2) Subclause 2.1“.............~..............

3) New subclause 2.3

4) New Annex B ,..,

Annex B - Guidelines for the use of 2 in formalizing the behaviour of Managed Objects .

0 ISO/IEC 1998

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office l Case postale 56 l CH- I2 1 I Geneve 20 l Switzerland
Printed in Switzerland

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10165-4:1992/Amd 3:1998
https://standards.iteh.ai/catalog/standards/sist/b7c07db7-0eb3-425f-a52d-

c3575de2fcf5/iso-iec-10165-4-1992-amd-3-1998

0 ISO/IEC ISO/IEC 101654:1992/Amd.3:1998(E)

Foreword

IS0 (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the
specialized system for worldwide standardization. National bodies that are members of IS0 or IEC participate in the
development of International Standards through technical committees established by the respective organization to deal with
particular fields of technical activity. IS0 and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with IS0 and IEC, also take part in the work.

In the field of information technology, IS0 and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft
International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the national bodies casting a vote.

Amendment 3 to ISO/IEC 10 165-4: 1992 was prepared by Joint Technical Committee ISO/IEC JTC I, Information technology,
Subcommittee SC 33, Distributed application services, in collaboration with ITU-T. The identical text is published as ITU-T
Rec. X.722/Amd.3.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10165-4:1992/Amd 3:1998
https://standards.iteh.ai/catalog/standards/sist/b7c07db7-0eb3-425f-a52d-

c3575de2fcf5/iso-iec-10165-4-1992-amd-3-1998

This page intentionally left blank iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10165-4:1992/Amd 3:1998
https://standards.iteh.ai/catalog/standards/sist/b7c07db7-0eb3-425f-a52d-

c3575de2fcf5/iso-iec-10165-4-1992-amd-3-1998

ISO/IEC 10165-4 : 1992/Amd.3 : 1998 (E)

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY - OPEN SYSTEMS INTERCONNECTION -
STRUCTURE OF MANAGEMENT INFORMATION: GUIDELINES FOR

THE DEFINITION OF MANAGED OBJECTS

AMENDMENT 3
Guidelines for the use of Z in formalizing the behaviour of managed objects

1) Table of contents

Add the following reference to the table of contents:

Annex B - Guidelines for the use of 2 in formalizing the behaviour of managed objects

2) Subclause 2.1

Add the following reference to 2.1:
- CCITT Recommendation X.73 1 (1992) I ISOIIEC 10164-2: 1992, Information technology - Open Systems

Interconnection - Systems Management: State management function.

3) New subclause 2.3

Add a new subclause as follows:

23 . Additional references
- ISOLIEC 13568: l), Information technology - Z specification language.

1) Presently at the stage of draft.

4) New Annex B

Add a new Annex B, as follows:

ITU-T Rec. X.722 (1992)/Amd.3 (1997 E) 1

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10165-4:1992/Amd 3:1998
https://standards.iteh.ai/catalog/standards/sist/b7c07db7-0eb3-425f-a52d-

c3575de2fcf5/iso-iec-10165-4-1992-amd-3-1998

ISO/IEC 101654 : 1992/Amd.3 : 1998 (E)

Annex B

Guidelines for the use of Z in formalizing the behaviour of Managed Objects

(This annex does not form an integral part of this Recommendation I International Standard)

Bl . Introduction

This annex contains a technical guide on the use of the 2 language for defining the behaviour of managed objects which
support OS1 management interworking. It is informative and not normative. It does not require Formal Definition
Techniques (FDTs) to be used to specify MO behaviour. If FDTs are to be used, it does not require 2 to be used; other
languages such as SDL are also suitable. Even if 2 is to be used, other ways of specifying MO behaviour are possible.

Formal specifications of MO behaviour can be directly valuable because they are clear and unambiguous. The act of
producing a formal specification forces the details of the behaviour to be analysed closely. Thus, it can also be used as a
tool to identify and correct ambiguities which might go undetected in a specification relying solely on natural language.
For these reasons formal specification can be useful to improve behaviour specification.

This annex contains an illustrative example that demonstrates current best practice. It aims to establish a common basis
and understanding of this particular formal approach which will help achieve consistency in similar developments. It
should provide a useful starting point for GDMO users wishing to use Z to improve their behaviour specifications.

It is aimed at an audience familiar with the basic
and the Z language.

concepts of managed object specification using the GDMO templates,

For the remainder of this annex, the terms “managed object” and “MO” will be used to refer to a managed object class
definition given using the GDMO templates.

B.2

The Z notation is a formal specificati on notation based on set theory
express ive power to be able to describe single classes of managed objects.

Language issues

and predicate calculus. It possesses sufficient

However, there exists no notion of encapsulation in Z. A Z specification typically consists of a model of some state and a
collection of operations to modify the state. There is no method built into Z to parcel the state and its operations up into a
single module and re-use it in another specification. The consequence of this becomes apparent when it becomes
necessary to describe managed objects which inherit variables and behaviour from other managed object class definitions.

The effect of inheritance can be ach ieved by the technique of schema
respects Z is suitable for expressing single cl asses of managed objects

B.3 What needs to be translated

The behaviour definitions, or parts there of, need
which the remaining parts of the GDMO templates

to be translated from
need to be formalized

the informal
depends large

inclusion at the expense of some clarity. In all other

description into Z. The extent
ly on the needs of the specifier.

to

The GDMO templates already include a semi-formal definition of data types in ASN. 1. It is possible to write a
Z specification using these ASN. 1 definitions as a basis for types used in the Z specification, and this saves a significant
amount of work.

However, if a specification is written in this way, then it makes it a greater task for the specifier to ensure that it is
syntactically correct. Without Z specifications of the ASN.1 definitions, it is not possible to use existing Z tools which
provide support for checking the syntax and static semantics of a Z specification.

In summary, it is possible to improve the behaviour definitions by using Z without re-writing the ASN. 1 data types, but
there is a significant benefit to be gained by a full translation of the ASN.l data types into Z. Examples of how to convert
ASN. 1 Basic Types into Z are provided in B.7.1.

2 ITU-T Rec. X.722 (1992)/Amd.3 (1997 E)

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10165-4:1992/Amd 3:1998
https://standards.iteh.ai/catalog/standards/sist/b7c07db7-0eb3-425f-a52d-

c3575de2fcf5/iso-iec-10165-4-1992-amd-3-1998

ISO/IEC 10165-4 : 1992/Amd.3 : 1998 (E)

B.3.1 From GDMO templates to Z

This subclause contains general guidelines of how to go about translating a managed object from its informal description
as given in this Recommendation I International Standard into Z. It should be stressed at the outset that such a translation
can only be carried out informally since a formal translation would require, as a minimum, that both the source and target
languages be formal.

Moreover, as with anv mapping between two distinct languages, there
constructs. The problem multiplies when one of the languages happens to

.
bl: bound to be

informal or to
some mismatch between their
include informal components.

In this subclause some of the main features of the templates defined in this Recommendation I International Standard are
listed together with the ways in which they differ from or correspond to constructs in Z. In the process, general ways of
resolving the mismatch or advice on how they may be tackled individually on an ad-hoc basis is offered.

This annex wi 11 concentrate on what is necessary to
on how to con vert ASN. 1 types is provided in B.6.

describe the behaviour of a managed object. Additional information

B.3.2 Datatypes

The first step is to rewrite the datatypes from this Recommendation I International Standard as Z types. ASN.l provides
the usual facilities of datatyping but its constructors are biased towards the description of datastreams communicated
between systems.

In ASN.1, the type constructors are defined as forms of list. In Z, types are sets. Although it is possible to model the
ASN.l type constructors as sequences in Z, it is sometimes more natural to consider the operations available on the
ASN. 1 types and to map them to Z types which more clearly describe their structure. The ASN.l sequence and set types
can be mapped to Z tuples. The ASN. 1 sequence-of type can be mapped to a Z sequence. The ASN. 1 set-of type can be
mapped to a Z set.

ASN. 1 incl udes special support for encoding, such
in Z s lince i t doesn’t affect the behaviour defin ition.

as type labels and default values. This does not need to be represented

Subclause B.6.2 provides additional information on how to convert ASN.l types.

B.3.3 MO Attributes

Managed objects are defined to have certain management attributes. These attributes have a datatype defined in ASN.1.
They are assigned object identifiers. They also may have a matches-for property. Two ways to model such attributes have
been proposed:

0

0

simple attribute types; and

attribute types as schemas.

The simplest is to represent the MO attribute within the MO as a Z variable with the appropriate datatype. Then
separately we will need a constant definition which represents the object identifier of that attribute. This constant will be
related to the actual attribute by convention only. We can use the actual fixed matches-for property when matching
operations are defined for that attribute. An example of this is given in B.6.3.

It is also possible to encapsulate all these properties of an attribute in a single schema type which will then be the type of
the Z variable modelling the MO attribute. Thus, the schema will include the value of the attribute as well as the object
identifier and the matches-for property if any. An example of this is given in B.6.4. Where matching rules other than
equality are required, it is possible to define the matches-for parameter as a Z relation over the type of the value of the
attribute. This allows the formal representation of arbitrary ad-hoc matching rules, which may be important for scoping,
filtering and object selection.

It is difficult to model ASN.1 type ANY in Z. One case where this is common is to give lists of attribute values. Thus, a
fully formal model will probably require a Z free type combining the attribute types already defined. An example of this
can be found in B.6.1 and B.6.5.

Object identifiers are formally modelled by a given set.

[OB JECTID]

ITU-T Rec. X.722 (1992)/Amd.3 (1997 E) 3

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10165-4:1992/Amd 3:1998
https://standards.iteh.ai/catalog/standards/sist/b7c07db7-0eb3-425f-a52d-

c3575de2fcf5/iso-iec-10165-4-1992-amd-3-1998

ISO/IEC 10165-4 : 1992/Amd.3 : 1998 (E)

B.3.4 Other Object Identifiers

Many things besides attributes also have an Object Identifier. It is convenient to introduce them all as constants in
axiomatic definitions. The convention of suffixing them with “Oid” will be used. Typically such constants will be needed
for classes, packages and notifications.

An example is:

packagesPackageOid : OBJECTID
allomorphsPackageOid : OBJECTID
topClassOid : OBJECTID

B.3.5 Inheritance and Compatibility

Z can be used to build inheritance hierarchies of MOs by using schema inclusion to model inheritance and specialization.
This does correctly model the behaviour of an MO class and its sub-types but it fails to make explicit the strong sub-
typing relationship that is really present. For that, a language that models inheritance explicitly is needed.

Thus Z can be used to define individual MOs satisfactorily, but to be able to talk about inheritance and compatibility, the
additional power of a language that models inheritance explicitly is needed.

Inheritance is not supported by Z. It can be modelled by simple schema inclusion of state schcmas.

The definition of MO inheritance requires sub-classes to be compatible- Unfortunately this does not require the
sub-classes to be sub-types in Z. Thus, typically an MO can report its actual class. Since t,he actual class attribute always
reports an object’s actual class, a sub-class cannot report the class of a super-class. Therefore, a sub-class cannot exhibi:
the same behaviour as its super-class in returning the value of its actual class attribute (i.e. it is not substitutable), even. iC
it is behaving allomorphically. Therefore managed object class sub-classing is not equivalent to Z sub-types? where a sub-
type would exhibit the same behaviour as its super-type. However, a sub-dass exhibits very Me “‘ear~sarbstm.rugablc”
behaviour.

In this way it can be seen that MO inheritance as defined in this Recommendation I International Standard allows specific
behaviour in a parent which is inconsistent with the behaviour of its children. Since there is a very limited amount of this
non-substitutable behaviour, an MO class can be represented by two class specifications. One captures the behaviour that
any instance and also any extended MO must exhibit, The other is a specialization and captures that behaviour exhibited
only by instances of the compatible class and not by any extensions” It is this latter specification that is instantiated to
give the complete behaviour of an actual MO instance.

B.3.6 Packages

Many parts of the functionality of a class may be present in some individual MOs and not in others. This
Recommendation I International Standard describes this process by grouping functionality into conditional packages.
Then, each MO instantiates appropriate packages” In Z functionality cannot be provided in this conditional way but it is
possible to make the behaviour of the MO depend on which packages are instantiated. This is straightforward because the
MO must contain a management attribute called packages which lists the object identifiers of the packages actually
instantiated. Thus, to model behaviour in a conditional package, the behaviour itself becomes conditional on the presence
of the package identifier in the packages attribute.

B.3.7 The Class

To define an MO class it is necessary to re present its attributes and its
sch ema and opera tions become Z operation schemas.

operations. Attributes become part of the Z state

B.3.7.1 Attributes

The attributes of the managed object are declared in a state schema. Each attribute is given a type, which may be of a type
declared in the ASN. 1 part of the GDMO template, or which may use types declared in Z in a fully formal model.

4 ITU-T Rec. X.722 (1992)/Amd.3 (1997 E)

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10165-4:1992/Amd 3:1998
https://standards.iteh.ai/catalog/standards/sist/b7c07db7-0eb3-425f-a52d-

c3575de2fcf5/iso-iec-10165-4-1992-amd-3-1998

ISO/IEC 101654 : 1992/Amd.3 : 1998 (E)

B.3.7.2 The Get operation

The manager may request a Get operation to be performed on an MO. The CMISE definition of M-Get has many
parameters but most of these are concerned with access control and object selection and so on. In this instance Get may
be modelled at the Managed Object Boundary ignoring these issues and replacing the single Get operation by a number
of Get<name> operations, where <name> is a single attribute.

B.3.7.3 The GetAll operation

A GetAll operation, which has no input, is also modelled. It returns a non-empty set of Attribute Values.

B.3.7.4 Replace operations

Set on an individual MO is requested by the CMISE M-Set operation. This specification models the Replace Operations
as seen at the MO Boundary instead. In this specification, Replace Operations refers to the attribute operations set, set to
default, add and remove.

The consequence of this is that a 2 schema to represent each modification is specified.

B.3.7.5 Notifications

Notifications are unrequested messages sent by the MO to report events within it. However they are not modelled as
operations. Instead they are modelled as outputs from operations that happen on the MO. Thus, any operation (whether
invoked by the manager or internally by the resource) can generate output and if it causes a notification that notification
should be part of that operation’s output.

This means that the output of a 2 operation schema that can cause notifi cations shou Id be a set of notificati
those occasions on which it does not emit a notification can be represented by giving an empt .y set as 0 utput.

ons. Then

The data in a notification consists of an EventType which is the object identifier of its standard definition. This is
followed by various information relevant to that particular notification. The object identifier can typically be defined as a
constant and the particular data as a schema-type. The behaviour of the notification is included in any object which can
generate the notification.

B.3.7.6 Actions

Actions are operations performed by the manager on the MO. They are very naturally represented by 2 operations.

B.3.8 Specification of the system of objects

The rest of the annex describes how to represent the behaviour of a single object. When considering object
creation/deletion, name bindings, containment and naming, it is necessary to describe the state of the system where the
objects reside. Object creation and deletion can be represented by a change of state of this system. Name binding and
containment can be represented by a relation over the set of objects. Naming can then be defined in terms of this relation.

B.4 An example

In this subclause, example definitions for the MO class top and State Management attributes are given. Since the main
concern of this guide is the modelling of behaviour, the creation of 2 types from ASN.l types is not presented in this
subclause. A full formal definition is given in B.7.

B.4.1 top

The first class to be defined is top, which is the ultimate parent (in the inheritance hierarchy) of all MOs.

top has four management attributes, objectclass, packages, allomorphs and nameBinding. objectclass holds the object
identifier of the class, while packages holds the object identifiers of the packages it instantiates. nameBinding holds the
object identifier of the name binding used to instantiate the object and allomorphs holds the object identifiers of the
classes to which the object can be allomorphic. Since management attributes can be in packages, the attributes present in
MOs of a given class can vary. This is modelled by including an additional modelling attribute called attributes, which
holds the object identifiers of the attributes that are actually instantiated in the individual MO. Note that all the attributes
present in top are fixed for the lifetime of any individual MO.

Z does not explicit1 y model in
or external ly by the manager.

terfaces, and so it is not possible to formally define which operations are invoked internally

ITU-T Rec. X.722 (1992)/Amd.3 (1997 E) 5

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10165-4:1992/Amd 3:1998
https://standards.iteh.ai/catalog/standards/sist/b7c07db7-0eb3-425f-a52d-

c3575de2fcf5/iso-iec-10165-4-1992-amd-3-1998

ISO/IEC 101654 : 1992/Amd.3 : 1998 (E)

TopState

allomorphs: FOBJECTID
objectclass: OBJECTID
nameBinding: OBJECTID
packages: FOBJECTID
attributes: F OBJECTID

{objectClassOid, nameBindingOid} cattributes -
allomorphsPackageOid E packages 3 allomorphsOid Eattributes
packagesPackageOid gpackages
packages # 0 a packagesoid Eattributes

attributes is not an MO attribute but a new state component defined for convenience. It lists the MO attributes an MO
includes. Thus, the invariant enforces that it must contain the object identifiers of the appropriate attributes as described
in B.3.3 (and defined in B.7.4). objectCEass and nameBinding are mandatory. packages is present if any registered
package is instantiated apart from packagespackage. In this case this means allomorphsPackage.

The operation TopGetNameBinding interrogates the MO and returns the value of the nameBinding attribute, without
changing TopState. TopGetNameBinding is invoked by the manager.

TopGetNameBinding

.Z TopSta te
result!: OBJECTID

result! = nameBinding

The operations TopGetAlZomorphs, TopGetObjectClass and TopGetPackages have not been defined here. Note that there
is no operation to get attributes, since attributes is not a real MO attribute as specified in the GDMO template.

TopGetAIE gets all the attribute values of an object. It always returns values for objectClass and nameBinding. If
conditional packages or allomorphs are present, then it gets those too. TopGetAZZ is invoked by the manager.

TopGetAll

ETopState
result!: PA ttributevalues

attributes = # result!
ObjectClassValue objectClass E result!
NameBindingValue nameBinding E result!
PackagesOid Eattributes 3 packagesvalue packages E result!
AllomorphsOid Eattributes q allomorphsValue allomorphs E result!

TopEventReport is a way to model notifications. TopEventReport occurs spontaneously and represents the way event
reports are not controlled by the manager.

TopEventReport

r .F TopSta te
notification !: Even tlnfo

6 ITU-T Rec. X.722 (1992)/Amd.3 (1997 E)

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10165-4:1992/Amd 3:1998
https://standards.iteh.ai/catalog/standards/sist/b7c07db7-0eb3-425f-a52d-

c3575de2fcf5/iso-iec-10165-4-1992-amd-3-1998

ISO/IEC 101654 : 1992/Amd.3 : 1998 (E)

B.4.2 StateManagement class

This class does not reflect any specific MO class. Instead it reflects the behaviour of any object which includes any of
certain standard attributes: administrativestate, operationalState, and usagestate. It is more convenient within this
framework to understand this inclusion as inheritance and it does serve as a useful example.

The state schema includes the TopState definitions and predicates, and defines some additional variables and predicate
conjunctions.

StateManagementState

TopSta te
administrativestate:
Administrativestate
operationalstate: OperationalState
usageSta te: UsageSta te

operationalstate = disabled q usagestate = idle
administrativestate = locked 3 usagestate = idle
usagestate = idle 3 administrativestate # shuttingDown

State Management inherits the operations from Top. Although there is no mechanism built into Z to inherit operations, it
is straightforward to redefine the operations in terms of the new state. The predicate part of StateManagementState
follows from the definition of the State Management function in CCITT Rec. X.721 (1992) I ISO/IEC 10165-2: 1992 and
CCITT Rec. X.73 1 (1992) I ISOJIEC 10164-2: 1992.

The operation SMGetNameBinding can be easily defined, since it has no effect upon the new state variables declared in
StateManagementState. The definition of TopGetNameBinding can be re-used:

SMGetNameBinding

r TopGetNameBinding
.ZSta teManagementSta te

Definitions for operations to get the other attributes of StateManagementState have also been omitted from this example.
The operations SMGetAllomorphs, SMGetObjectCZass and SMGetPackages can re-use the definitions from Top as for
SMGetNameBinding. New operations will need to be defined for GetSMAdministrativeState, GetSMOperationalState and
SMGetUsageState. SMEventReport may also be re-used.

The SMGetAZZ schema also makes use of an operation defined on TopState. It includes the definition of TopGetAZZ and
strengthens the postcondition.

SMGetAU

r ESta teManagemen tSta te
TopGetAZl

administrativestateoid Eattributes
q administrativestatevalue administrativestate ~result!

OperationalStateOid Eattributes
3 0perationalStateValue operationalstate Eresult!

UsageStateOid Eattributes
* usageStateValue usagestate E result!

The SMReplaceAdministrativeState operation describes behaviour specific to the State Management class whereby the
administrative state is replaced by another value supplied as an input. Depending on the state of the object when the
operation is carried out, the usage state may also be changed. The operational state is not altered by the operation.

ITU-T Rec. X.722 (1992)/Amd.3 (1997 E) 7

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC 10165-4:1992/Amd 3:1998
https://standards.iteh.ai/catalog/standards/sist/b7c07db7-0eb3-425f-a52d-

c3575de2fcf5/iso-iec-10165-4-1992-amd-3-1998

	Š×ÿf�”ŠßÀ÷=!è—kï”«�™‘êÕHNùüﬁÉ���ôô,Ò›NWﬂ˜Üõs
Cé~x�A„@u�Œ�¨�ÒÐùŁ6`Õ�)?½ë¼[ú¡};ÍÂB��š³Ÿ•ñ]^Ÿhp��xjµìx@¶•¥;—£×çµú}+‘Jﬁ{�áKtš	?g&¤Í,žbâô

