

Designation: D5547 – 95 (Reapproved 2003)

Standard Test Method for Clay and Zeolite in Powdered Laundry Detergents by Atomic Absorption¹

This standard is issued under the fixed designation D5547; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers atomic absorption tests applicable to powdered laundry detergents containing clay and zeolite.²

1.2 The values stated in SI units are to be regarded as the standard.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:³

E180 Practice for Determining the Precision of ASTM Methods for Analysis and Testing of Industrial and Specialty Chemicals⁴

3. Summary of Test Method

3.1 The test sample is fused with lithium metaborate, dissolved in acid, its silicon and aluminum content measured by atomic absorption, and the silicon/aluminum (Si/Al) ratio calculated. The clay and zeolite content of the test sample is calculated from the Si/Al ratio of the test sample and the Si/Al ratio of the clay and zeolite expected in the test sample.

4. Interferences

4.1 Materials other than clay and zeolite that contain silicon or aluminum, or both, will interfere.

5. Principle

5.1 Clay and zeolite contain silicon and aluminum at different relative levels.⁵ The silicon/aluminum ratio is then a measure of the relative level of clay and zeolite in detergent powders. That is, detergent powders with a Si/Al ratio matching clay or zeolite contain only clay or zeolite, respectively. Detergent powders with Si/Al ratio falling between the Si/Al ratio of clay and zeolite contain both clay and zeolite.

5.2 This test method is based on the linear relationship between the relative composition (or ratio) of clay/zeolite in detergent powders and the Si/Al ratio of such detergents.

5.3 A calibration equation is derivable, therefore, from just two experimental points: the Si/Al ratio of the zeolite standard (100 zeolite, 0 % clay) and the Si/Al ratio of the clay standard (0 % zeolite, 100 % clay).

6. Apparatus

6.1 *Suitable Atomic Absorption Spectrophotometers*, fitted with a nitrous oxide-acetylene burner and aluminum and silicon hollow cathode source lamps.

6.2 *Nitrous Oxide and Acetylene Tanks*, with suitable regulators.

6.3 Muffle Furnace, capable of reaching 1000°C.

- 6.4 Analytical Balance.
- 6.5 Fisher Burner or Equivalent.
- 6.6 20-mL or Larger Platinum Crucibles.
- 6.7 Platinum-tip Tongs.
- 6.8 25-mL Buret.
- 6.9 100-mL and 200-mL Polypropylene Volumetric Flasks.
- 6.10 10-mL and 25-mL Graduated Cylinders.
- 6.11 150-mL Plastic Beakers.
- 6.12 Magnetic Stirrer and Magnetic Stirring Bars.

6.13 *Blender*, such as Waring⁶ or Osterizer⁷ or an industrial lab model, or a mortar and pestle, if a blender is not available.

7. Reagents

7.1 *Purity of Reagents*—Reagents grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

¹ This test method is under the jurisdiction of ASTM Committee D12 on Soaps and Other Detergents and is the direct responsibility of Subcommittee D12.12 on Analysis of Soaps and Synthetic Detergents.

Current edition approved April 15, 1995. Published June 1995. Originally published as D5547 – 94. Last previous edition D5547 – 94. DOI: 10.1520/D5547-95R03.

 $^{^2}$ Silicon and aluminum measurements are by atomic absorption in this test method. ICP can be used to make such measurements as well.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

⁴ Withdrawn. The last approved version of this historical standard is referenced on www.astm.org.

⁵ The Si/Al ratio is usually about 1 in zeolites and about 3 in clays.

⁶ Waring blenders are available commercially.

⁷ Osterizer blenders are widely available commercially.

all reagents conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available.⁸ Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

7.2 *Purity of Water*—Unless otherwise indicated, reference to water shall be understood to mean distilled water or water of equal purity.

7.3 Aluminum Standard, 1000 µg Al/mL⁹ or equivalent.

7.4 Silicon Standard, 1000 µg Si/mL.9

7.5 *Potassium Chloride*, Baker-analyzed reagent or equivalent.

7.6 Potassium Chloride Solution (1 %)—Dissolve 1 g of potassium chloride in 100 mL of distilled water. Mix well and store in plastic container.

7.7 Concentrated Hydrochloric Acid, Baker-analyzed reagent or equivalent.

7.8 *Hydrochloric Acid Solution* (1 + 1)—Mix equal parts of concentrated HCl and distilled water by volume. Mix well and store in plastic container.

7.9 *Potassium Iodide*, Baker-analyzed reagent or equivalent.

7.10 Lithium Metaborate SPEX Grade, Special for Fusions¹⁰.

7.11 *Zeolite Standard*—The same material expected in the test sample, to be used as standard.

7.12 *Clay Standard*—The same material expected in the test sample, to be used as standard.

8. Instrumental Conditions

8.1 Following the instrument manufacturer's instructions, set up the atomic absorption instrument as follows:

To measure Aluminum

To measure Silicon 554

Wavelength, nm	rd 309.3h.ai/catalog/st	a251.6 ds/sist/07a70ec5-d
Range	UV	UV
Slit, nm	0.2	0.2
Flame	Nitrous oxide-acetylene.	Nitrous oxide-acetylene.
	Rich, red.	Strongly reducing red cone 2–3
		cm high with yellow outer
		edge.

9. Procedure

9.1 Determination of Aluminum:

9.1.1 Accurately weigh 0.1 g (to the nearest 0.1 mg) of zeolite standard (the same material expected in the test sample) into a clean, dry, platinum crucible. Also accurately weigh 0.2 g of clay standard (the same material expected in the test sample) into another clean, dry, platinum crucible.

9.1.2 Grind a representative powdered detergent test sample in a blender to a fine, homogenous powder. (If a blender is not available, use a mortar and pestle).

9.1.3 Accurately weigh 0.3 g (to the nearest 0.1 mg) of the ground test sample(s) into still another clean, dry, platinum crucible.

9.1.4 Add 2 g (± 0.1 g) of lithium metaborate to each platinum crucible, and mix the contents with a plastic rod.

9.1.5 Place the crucibles containing the mixtures in a cool muffle furnace and turn on the heat. When the temperature reaches 1000°C, maintain heat for at least 5 additional min.

Note 1—The sample will ignite and splatter if placed in a hot furnace. If it is not possible to start with a cool furnace, gently char the sample with a Fisher burner first, avoiding ignition, then place in the furnace.

9.1.6 Place 90 mL of distilled water into 150-mL plastic beakers. (Use as many beakers as there are standards and samples).

9.1.7 Add a magnetic stirring bar to each beaker, and place on a magnetic stirrer. Mix rapidly to make the water swirl in the beaker, but do not allow anything to splash out. This apparatus should be near the furnace containing the ashed standards and sample(s).

9.1.8 Using platinum-tip tongs, remove one crucible at a time from the furnace, and immediately place over a Fisher burner flame without allowing the melted sample to solidify.

9.1.9 Add about 2 mg (a pinch on the end of a spatula) of potassium iodide (KI) to the melted sample. A molten ball will form. Roll the ball around the inside of the dish to pick up any droplets or particles. The KI releasing agent is volatile, and it is necessary to carry out this step rather quickly (about 2 min). If the ball collapses and flows into the dish, start again by adding fresh KI.

9.1.10 Drop each molten ball quickly into the swirling water of each plastic beaker.

<u>-95</u> Note 2—Precaution: Use face shield and protective clothing.

9.1.11 Add 20 mL of 1 + 1 HCl and 20 mL of 1 % potassium chloride solution and mix until completely dissolved. Quantitatively transfer to a 200-mL plastic volumetric flask with distilled water. Dilute to volume and mix well.

9.1.12 Using a buret, add 5, 7.5, and 10 mL of 1000-ppm aluminum standard into 3 separate 100-mL plastic volumetric flasks. These standards contain 50, 75, and 100 μ g Al/mL respectively. (Make these standards fresh each day).

9.1.13 Add 10 mL 1 + 1 HCl, 10 mL 1 % KCl, and 1 g of lithium metaborate to each flask. Dilute to volume with distilled water and mix until completely dissolved.

9.1.14 Prepare a reagents blank.

9.1.15 Set up the atomic absorption instrument as described in 8.1.

9.1.16 Zero the instrument with the reagents blank. Measure the absorbance of the aluminum standards, the zeolite standard, the clay standard and the test sample at 309.3 nm. Repeat the measurement three more times for each flask and calculate the average absorbance. *Save the solutions, except the aluminum standards, for silicon determination in 9.2.*

9.1.17 Prepare a standard curve by plotting the average absorbance versus concentration in μ g/mL of each aluminum standard.

⁸ Reagent Chemicals, American Chemical Society Specifications, American Chemical Society, Washington, DC. For suggestions on the testing of reagents not listed by the American Chemical Society, see Analar Standards for Laboratory Chemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeia and National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville, MD.

⁹ Available from Fisher Scientific Co., Fairlawn, NJ 07410.

¹⁰ Available from SPEX Industries, Box 798, Metuchen, NJ 08840.