
B C Reference number
ISO/IEC TR 15580:1998(E)

TECHNICAL
REPORT

ISO/IEC
TR 15580

First edition
1998-12-01

Information technology — Programming
languages — Fortran — Floating-point
exception handling

Technologies de l'information — Langages de programmation — Fortran —
Manipulation de l'exception du point flottant

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15580:1998
https://standards.iteh.ai/catalog/standards/sist/1964a89f-6830-43bd-94fc-

757d316e6267/iso-iec-tr-15580-1998

ISO/IEC TR 15580:1998(E)© ISO/IEC 1998

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office • Case postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

ii

Foreword

ISO (the International Organization for Standardization) and IEC (the Inter-
national Electrotechnical Commission) form the specialized system for
worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical
committees established by the respective organization to deal with particu-
lar fields of technical activity. ISO and IEC technical committees collaborate
in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the
work.

In the field of information technology, ISO and IEC have established a joint
technical committee, ISO/IEC JTC 1.

The main task of technical committees is to prepare International
Standards, but in exceptional circumstances a technical committee may
propose the publication of a Technical Report of one of the following types:

— type 1, when the required support cannot be obtained for the publi-
cation of an International Standard, despite repeated efforts;

— type 2, when the subject is still under technical development or where
for any other reason there is the future but not immediate possibility of
an agreement on an International Standard;

— type 3, when a technical committee has collected data of a different
kind from that which is normally published as an International Standard
(“state of the art”, for example).

Technical Reports of types 1 and 2 are subject to review within three years
of publication, to decide whether they can be transformed into International
Standards. Technical Reports of type 3 do not necessarily have to be
reviewed until the data they provide are considered to be no longer valid or
useful.

ISO/IEC TR 15580, which is a Technical Report of type 2, was prepared by
Joint Technical Committee ISO/IEC JTC 1, Information technology, Sub-
committee SC 22, Programming languages, their environments and system
software interfaces.

This Technical Report specifies an extension of the programming language
Fortran, specified by ISO/IEC 1539-1:1997.

It is the intention of ISO/IEC JTC 1/SC 22 that the semantics and syntax
described in this Technical Report be incorporated in the next revision of
ISO/IEC 1539-1:1997 exactly as they are specified here unless experience
in the implementation and use of this feature has identified any errors
which need to be corrected, or changes are required in order to achieve
proper integration, in which case every reasonable effort will be made to
minimize the impact of such integration changes on existing commercial
implementations.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15580:1998
https://standards.iteh.ai/catalog/standards/sist/1964a89f-6830-43bd-94fc-

757d316e6267/iso-iec-tr-15580-1998

 ISO/IEC ISO/IEC TR 15580: 1998(E)

Introduction
Exception handling is required for the development of robust and efficient numerical software. In particular, it
is necessary in order to be able to write portable scientific libraries. In numerical Fortran programming, current
practice is to employ whatever exception handling mechanisms are provided by the system/vendor. This clearly
inhibits the production of fully portable numerical libraries and programs. It is particularly frustrating now that
IEEE arithmetic (specified by IEEE 754-1985 Standard for binary floating-point arithmetic, also published as
IEC 559:1989, Binary floating-point arithmetic for microprocessor systems) is so widely used, since built into
it are the five conditions: overflow, invalid, divide-by-zero, underflow, and inexact. Our aim is to provide
support for these conditions.

We have taken the opportunity to provide support for other aspects of the IEEE standard through a set of
elemental functions that are applicable only to IEEE data types.

This proposal involves three standard modules:

IEEE_EXCEPTIONS contains a derived type, some named constants of this type, and some simple
procedures. They allow the flags to be tested, cleared, set, saved, or restored.

IEEE_ARITHMETIC behaves as if it contained a USE statement for all of IEEE_EXCEPTIONS and
provides support for other IEEE features through further derived types, named constants, and simple
procedures.

IEEE_FEATURES contains some named constants that permit the user to indicate which IEEE features
are essential in the application. Some processors may execute more slowly when certain features are
requested.

To facilitate maximum performance, each of the proposed functions does very little processing of arguments.
In many cases, a processor may generate only a few inline machine code instructions rather than library calls.

In order to allow for the maximum number of processors to provide the maximum value to users, we do not
require IEEE conformance. A vendor with no IEEE hardware need not provide these modules and any request
by the user for any of them with a USE statement will give a compile-time diagnostic. A vendor whose
hardware does not fully conform with the IEEE standard may be unable to provide certain features. In this case,
a request for such a feature will give a compile-time diagnostic. Another possibility is that not all flags are
supported or that the extent of support varies according to the kind type parameter. The user must utilize an
inquiry function to determine if he or she can count on a specific feature of the IEEE standard.

Note that an implementor should avoid a macro implementation, as IEEE conformance is often controlled by
compiler switches. A processor which offers a switch to turn off a facility should adjust the values returned for
these inquiries. For example, a processor which allows gradual underflow to be turned off (replaced with flush
to zero) should return false for IEEE_SUPPORT_DENORMAL(X) when a source file is processed with that
option on. Naturally it should return true when that option is not in effect.

The most important use of a floating-point exception handling facility is to make possible the development of
2 2much more efficient software than is otherwise possible. The following ‘hypotenuse’ function, x + y ,

illustrates the use of the facility in developing efficient software.

REAL FUNCTION HYPOT(X, Y)
! In rare circumstances this may lead to the signaling of IEEE_OVERFLOW
 USE, INTRINSIC :: IEEE_ARITHMETIC
 REAL X, Y
 REAL SCALED_X, SCALED_Y, SCALED_RESULT
 LOGICAL, DIMENSION(2) :: FLAGS
 TYPE (IEEE_FLAG_TYPE), PARAMETER, DIMENSION(2) :: &
 OUT_OF_RANGE = (/ IEEE_OVERFLOW, IEEE_UNDERFLOW /)
 INTRINSIC SQRT, ABS, EXPONENT, MAX, DIGITS, SCALE
! The processor clears the flags on entry

iii

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15580:1998
https://standards.iteh.ai/catalog/standards/sist/1964a89f-6830-43bd-94fc-

757d316e6267/iso-iec-tr-15580-1998

ISO/IEC TR 15580 : 1998(E) ISO/IEC

! Try a fast algorithm first
 HYPOT = SQRT(X**2 + Y**2)
 CALL IEEE_GET_FLAG(OUT_OF_RANGE,FLAGS)
 IF (ANY(FLAGS)) THEN
 CALL IEEE_SET_FLAG(OUT_OF_RANGE,.FALSE.)
 IF (X==0.0 .OR. Y==0.0) THEN
 HYPOT = ABS(X) + ABS(Y)
 ELSE IF (2*ABS(EXPONENT(X)-EXPONENT(Y)) > DIGITS(X)+1) THEN
 HYPOT = MAX(ABS(X), ABS(Y))! one of X and Y can be ignored
 ELSE ! scale so that ABS(X) is near 1
 SCALED_X = SCALE(X, -EXPONENT(X))
 SCALED_Y = SCALE(Y, -EXPONENT(X))
 SCALED_RESULT = SQRT(SCALED_X**2 + SCALED_Y**2)
 HYPOT = SCALE(SCALED_RESULT, EXPONENT(X)) ! may cause overflow
 END IF
 END IF
! The processor resets any flag that was signaling on entry
END FUNCTION HYPOT

An attempt is made to evaluate this function directly in the fastest possible way. This will work almost every
time, but if an exception occurs during this fast computation, a safe but slower way evaluates the function. This
slower evaluation may involve scaling and unscaling, and in (very rare) extreme cases this unscaling can cause
overflow (after all, the true result might overflow if X and Y are both near the overflow limit).

If the overflow or underflow flag is signaling on entry, it is reset on return by the processor, so that earlier
exceptions are not lost.

Can all this be accomplished without the help of an exception handling facility? Yes, it can – in fact, the
alternative code can do the job, but of course it is much less efficient. That’s the point. The HYPOT function is
special, in this respect, in that the normal and alternative codes try to accomplish the same task. This is not
always the case. In fact, it very often happens that the alternative code concentrates on handling the exceptional
cases and is not able to handle all of the non-exceptional cases. When this happens, a program which cannot
take advantage of hardware flags could have a structure like the following:

 if (in the first exceptional region) then
 handle this case
 else if (in the second exceptional region) then
 handle this case
 :
 else
 execute the normal code
 end

But this is not only inefficient, it also inverts the logic of the computation. For other examples, see Hull,
Fairgrieve and Tang (1994) and Demmel and Li (1994).

The code for the HYPOT function can be generalized in an obvious way to compute the Euclidean norm,
2 2 2x + x + ... + x of an n–vector; the generalization of the alternative code is not so obvious (though1 2 n

straightforward) and will be much slower relative to the normal code than is the case with the HYPOT function.

In connection with reliable computation, there is a need for intrinsic conditions further to those of the IEEE
floating-point standard. Examples are:

INSUFFICIENT_STORAGE for when the processor is unable to find sufficient storage to continue
execution.

INTEGER_OVERFLOW and INTEGER_DIVIDE_BY_ZERO for when an intrinsic integer operation has
a very large result or has a zero denominator.

iv

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15580:1998
https://standards.iteh.ai/catalog/standards/sist/1964a89f-6830-43bd-94fc-

757d316e6267/iso-iec-tr-15580-1998

 ISO/IEC ISO/IEC TR 15580: 1998(E)

INTRINSIC for when an intrinsic procedure has been unsuccessful.

SYSTEM_ERROR for when a system error occurs.

This proposal has been designed to allow such enhancements in the future.

References

Demmel, J.W. and Li, X. (1994). Faster Numerical Algorithms via Exception Handling. IEEE Transactions on
Computers, 43, no. 8, 983-992.

Hull, T.E., Fairgrieve, T.F., and Tang, T.P.T. (1994). Implementing complex elementary functions using
exception handling. ACM Trans. Math. Software 20, 215-244.

v

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15580:1998
https://standards.iteh.ai/catalog/standards/sist/1964a89f-6830-43bd-94fc-

757d316e6267/iso-iec-tr-15580-1998

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15580:1998
https://standards.iteh.ai/catalog/standards/sist/1964a89f-6830-43bd-94fc-

757d316e6267/iso-iec-tr-15580-1998

TECHNICAL REPORT ISO/IEC ISO/IEC 15580: 1998(E)

Information technology – Programming languages – Fortran –

Floating-point exception handling

1 General

1.1 Scope

This Technical Report specifies an extension of the programming language Fortran, specified by the
international standard ISO/IEC 1539-1:1997. Its main aim is to provide support for the five exceptions of the
IEEE standard for floating-point arithmetic, but it also provides support for other features of the IEEE standard.
A processor is permitted to provide partial support and there are facilities for enquiring about which features
are supported or requiring support of certain features.

Clause 2 of this Technical Report contains a technical description of the features. It provides an overview and
does not include all the fine details. Clause 3 contains the editorial changes to the standard and thereby provides
a complete definition.

1.2 Normative references

The following standards contain provisions which, through references in this text, constitute provisions of this
Technical Report. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply. However, parties to agreements based on this Technical Report are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated below. For undated
references, the latest edition of the normative document referred applies. Members of IEC and ISO maintain
registers of currently valid International Standards.

ISO/IEC 1539-1:1997, Information technology – Programming Languages – Fortran – Part 1: Base language.

IEC 559:1989, Binary floating-point arithmetic for microprocessor systems.

Since IEC 559:1989 was originally IEEE 754-1985 Standard for binary floating-point arithmetic, and is widely
known by this name, we refer to it as the IEEE standard in this Technical Report.

1

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15580:1998
https://standards.iteh.ai/catalog/standards/sist/1964a89f-6830-43bd-94fc-

757d316e6267/iso-iec-tr-15580-1998

ISO/IEC 15580 : 1998(E) ISO/IEC

2 Technical specification

2.1 The model

This proposal is based on the IEEE model with flags for the floating-point exceptions (invalid, overflow,
divide-by-zero, underflow, inexact), a flag for the rounding mode (nearest, up, down, to-zero), and flags for
whether halting occurs following exceptions. It is not necessary for the hardware to have any such flags (they
may be simulated by software) or for it to support all the modes. Inquiry procedures are available to allow a
program to determine the extent of support. Inquiries are in terms of reals, but the same level of support is
provided for the corresponding complex kind.

Some hardware may be able to provide no support of these features or only partial support. It may execute
faster with compiled code that does not support all the features. This proposal therefore involves three intrinsic
modules. IEEE_EXCEPTIONS is for the exceptions and the minimum requirement is for the support of
overflow and divide-by-zero for all kinds of real and complex data. IEEE_ARITHMETIC behaves as if it
contained a USE statement for all of IEEE_EXCEPTIONS and provides support for other IEEE features.
IEEE_FEATURES contains some named constants that permit the user to indicate which features are essential
in the application. A program is required to fail if a requested feature is not available. The modules contain five
derived types (subclause 2.3), named constants to control the level of support (subclause 2.4), and a collection
of procedures (subclauses 2.5 to 2.10). None of the procedures is permitted as an actual argument.

2.2 The USE statement for an intrinsic module

New syntax on the USE statement provides control over whether it is intended to access an intrinsic module:
 USE, INTRINSIC :: IEEE_ARITHMETIC
or not:
 USE, NON_INTRINSIC :: MY_IEEE_ARITHMETIC

The INTRINSIC statement is not extended. For the old form:

 USE IEEE_ARITHMETIC

the processor looks first for a non-intrinsic module.

2.3 The derived types and data objects

The module IEEE_EXCEPTIONS contains the derived types:

IEEE_FLAG_TYPE, for identifying a particular exception flag. Its only possible values are those of
named constants defined in the module: IEEE_INVALID, IEEE_OVERFLOW,
IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, and IEEE_INEXACT. The modules also contains the
named array constants
 IEEE_USUAL = (/IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_INVALID/)
and
 IEEE_ALL = (/IEEE_USUAL, IEEE_UNDERFLOW, IEEE_INEXACT/)

IEEE_STATUS_TYPE, for saving the current floating point status.

The module IEEE_ARITHMETIC contains the derived types:

IEEE_CLASS_TYPE, for identifying a class of floating-point values. Its only possible values are those
of named constants defined in the module:
IEEE_SIGNALING_NAN, IEEE_QUIET_NAN, IEEE_NEGATIVE_INF,
IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_DENORMAL, IEEE_NEGATIVE_ZERO,
IEEE_POSITIVE_ZERO, IEEE_POSITIVE_DENORMAL, IEEE_POSITIVE_NORMAL, and
IEEE_POSITIVE_INF.

2

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15580:1998
https://standards.iteh.ai/catalog/standards/sist/1964a89f-6830-43bd-94fc-

757d316e6267/iso-iec-tr-15580-1998

 ISO/IEC ISO/IEC 15580: 1998(E)

IEEE_ROUND_TYPE, for identifying a particular rounding mode. Its only possible values are those of
named constants defined in the module: IEEE_NEAREST, IEEE_TO_ZERO, IEEE_UP, and
IEEE_DOWN for the IEEE modes; and IEEE_OTHER for any other mode.

The module IEEE_FEATURES contains the derived type:

IEEE_FEATURES_TYPE, for expressing the need for particular IEEE features. Its only possible values
are those of named constants defined in the module: IEEE_DATATYPE, IEEE_DENORMAL,
IEEE_DIVIDE, IEEE_HALTING, IEEE_INEXACT_FLAG, IEEE_INF, IEEE_INVALID_FLAG,
IEEE_NAN, IEEE_ROUNDING, IEEE_SQRT, and IEEE_UNDERFLOW_FLAG.

2.4 The level of support

When IEEE_EXCEPTIONS or IEEE_ARITHMETIC is accessible, IEEE_OVERFLOW and
IEEE_DIVIDE_BY_ZERO are supported in the scoping unit for all kinds of real and complex data. Which
other exceptions are supported may be determined by the function IEEE_SUPPORT_FLAG, see subclause
2.6. Whether control of halting is supported may be determined by the function IEEE_SUPPORT_HALTING.
The extent of support of the other exceptions may be influenced by the accessibility of the named constants
IEEE_INEXACT_FLAG, IEEE_INVALID_FLAG, and IEEE_UNDERFLOW_FLAG of the module
IEEE_FEATURES. If a scoping unit has access to IEEE_UNDERFLOW_FLAG of IEEE_FEATURES, the
scoping unit must support underflow and return true from IEEE_SUPPORT_FLAG(IEEE_UNDERFLOW,X)
for at least one kind of real. Similarly, if IEEE_INEXACT_FLAG or IEEE_INVALID_FLAG is accessible,
the scoping unit must support the exception and return true from the corresponding inquiry for at least one kind
of real. Also, if IEEE_HALTING is accessible, the scoping unit must support control of halting and return true
from IEEE_SUPPORT_HALTING(FLAG) for the flag.

If a scoping unit does not access IEEE_EXCEPTIONS or IEEE_ARITHMETIC, the level of support is
processor dependent, and need not include support for any exceptions. If a flag is signaling on entry to such a
scoping unit, the processor ensures that it is signaling on exit. If a flag is quiet on entry to such a scoping unit,
whether it is signaling on exit is processor dependent.

For processors with IEEE arithmetic, further IEEE support is available through the module
IEEE_ARITHMETIC. The extent of support may be influenced by the accessibility of the named constants of
the module IEEE_FEATURES. If a scoping unit has access to IEEE_DATATYPE of IEEE_FEATURES, the
scoping unit must support IEEE arithmetic and return true from IEEE_SUPPORT_DATATYPE(X) (see
subclause 2.6) for at least one kind of real. Similarly, if IEEE_DENORMAL, IEEE_DIVIDE, IEEE_INF,
IEEE_NAN, IEEE_ROUNDING, or IEEE_SQRT is accessible, the scoping unit must support the feature and
return true from the corresponding inquiry function for at least one kind of real. In the case of
IEEE_ROUNDING, it must return true for all the rounding modes IEEE_NEAREST, IEEE_TO_ZERO,
IEEE_UP, and IEEE_DOWN.

Execution may be slowed on some processors by the support of some features. If IEEE_EXCEPTIONS or
IEEE_ARITHMETIC is accessed but IEEE_FEATURES is not accessed, the vendor is free to choose which
subset to support. The processor’s fullest support is provided when all of IEEE_FEATURES is accessed:

 USE IEEE_ARITHMETIC; USE IEEE_FEATURES

but execution may then be slowed by the presence of a feature that is not needed. In all cases, the extent of
support may be determined by the inquiry functions of subclause 2.6.

If a flag is signaling on entry to a procedure, the processor will set it to quiet on entry and restore it to signaling
on return.

If a flag is quiet on entry to a procedure with access to IEEE_EXCEPTIONS or IEEE_ARITHMETIC and is
signaling on return, the processor will not restore it to quiet.

In a procedure, the processor ensures that the flags for halting have the same values on return as on entry.

3

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15580:1998
https://standards.iteh.ai/catalog/standards/sist/1964a89f-6830-43bd-94fc-

757d316e6267/iso-iec-tr-15580-1998

ISO/IEC 15580 : 1998(E) ISO/IEC

In a procedure, the processor ensures that the flags for rounding have the same values on return as on entry.

2.5 The exception flags

The flags are initially quiet and signal when an exception occurs. The value of a flag is determined by the
elemental subroutine

 IEEE_GET_FLAG (FLAG,FLAG_VALUE)

where FLAG is of type IEEE_FLAG_TYPE and FLAG_VALUE is of type default LOGICAL. Being elemental
allows an array of flag values to be obtained at once and obviates the need for a list of flags.

Flag values may be assigned by the elemental subroutine

 IEEE_SET_FLAG (FLAG,FLAG_VALUE)

An exception must not signal if this could arise only during execution of a process further to those required or
permitted by the standard. For example, the statement

 IF (F(X)>0.0) Y = 1.0/Z

must not signal IEEE_DIVIDE_BY_ZERO when both F(X) and Z are zero and the statement

 WHERE(A>0.0) A = 1.0/A

must not signal IEEE_DIVIDE_BY_ZERO. On the other hand, when X has the value 1.0 and Y has the value
0.0, the expression

 X>0.00001 .OR. X/Y>0.00001

is permitted to cause the signaling of IEEE_DIVIDE_BY_ZERO.

2.6 Inquiry functions for the features supported

The module IEEE_EXCEPTIONS contains the following inquiry functions:

IEEE_SUPPORT_FLAG(FLAG[,X]) True if the processor supports an exception flag for all reals (X
absent) or for reals of the same kind type parameter as the argument X.

IEEE_SUPPORT_HALTING(FLAG) True if the processor supports the ability to control during
program execution whether to abort or continue execution after an exception.

The module IEEE_ARITHMETIC contains the following inquiry functions:

IEEE_SUPPORT_DATATYPE([X]) True if the processor supports IEEE arithmetic for all reals (X
absent) or for reals of the same kind type parameter as the argument X. Here support means employing an
IEEE data format and performing the operations of +, –, and * as in the IEEE standard whenever the
operands and result all have normal values.

IEEE_SUPPORT_DENORMAL([X]) True if the processor supports the IEEE denormalized numbers
for all reals (X absent) or for reals of the same kind type parameter as the argument X.

IEEE_SUPPORT_DIVIDE([X]) True if the processor supports divide with the accuracy specified by
the IEEE standard for all reals (X absent) or for reals of the same kind type parameter as the argument X.

IEEE_SUPPORT_INF([X]) True if the processor supports the IEEE infinity facility for all reals (X
absent) or for reals of the same kind type parameter as the argument X.

IEEE_SUPPORT_NAN([X]) True if the processor supports the IEEE Not-A-Number facility for all
reals (X absent) or for reals of the same kind type parameter as the argument X.

IEEE_SUPPORT_ROUNDING(ROUND_VALUE[,X]) True if the processor supports a particular
rounding mode for all reals (X absent) or for reals of the same kind type parameter as the argument X.

4

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15580:1998
https://standards.iteh.ai/catalog/standards/sist/1964a89f-6830-43bd-94fc-

757d316e6267/iso-iec-tr-15580-1998

 ISO/IEC ISO/IEC 15580: 1998(E)

Here, support includes the ability to change the mode by

 CALL IEEE_SET_ROUNDING_MODE(ROUND_VALUE)

IEEE_SUPPORT_SQRT([X]) True if the processor supports IEEE square root for all reals (X absent)
or for reals of the same kind type parameter as the argument X.

IEEE_SUPPORT_STANDARD([X]) True if the processor supports all the IEEE facilities defined in
this Technical Report for all reals (X absent) or for reals of the same kind type parameter as the argument
X.

2.7 Elemental functions

The module IEEE_ARITHMETIC contains the following elemental functions for reals X and Y for which
IEEE_SUPPORT_DATATYPE(X) and IEEE_SUPPORT_DATATYPE(Y) are true:

IEEE_CLASS(X) Returns the IEEE class (see subclause 2.3 for the possible values).

IEEE_COPY_SIGN(X,Y) IEEE copysign function, that is X with the sign of Y.

IEEE_IS_FINITE(X) IEEE finite function. True if IEEE_CLASS(X) has one of the values
IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_DENORMAL, IEEE_NEGATIVE_ZERO,
IEEE_POSITIVE_ZERO, IEEE_POSITIVE_DENORMAL, IEEE_POSITIVE_NORMAL.

IEEE_IS_NAN(X) True if the value is IEEE Not-a-Number.

IEEE_IS_NEGATIVE(X) True if the value is negative (including negative zero).

IEEE_IS_NORMAL(X) True if the value is a normal number.

IEEE_LOGB(X) IEEE logb function, that is, the unbiased exponent of X.

IEEE_NEXT_AFTER(X,Y) Returns the next representable neighbor of X in the direction toward Y.

IEEE_REM(X,Y) The IEEE REM function, that is X – Y*N, where N is the integer nearest to the exact
value X/Y.

IEEE_RINT(X) Round to an integer value according to the current rounding mode.

IIEEE_SCALB (X,I) Returns 2 X.

IEEE_UNORDERED(X,Y) IEEE unordered function. True if X or Y is a NaN and false otherwise.

IEEE_VALUE(X,CLASS) Generate a value of a given IEEE class. The value of CLASS is permitted to
be

IEEE_SIGNALING_NAN or IEEE_QUIET_NAN if IEEE_SUPPORT_NAN(X) has the value
true,

IEEE_NEGATIVE_INF or IEEE_POSITIVE_INF if IEEE_SUPPORT_INF(X) has the
value true,

IEEE_NEGATIVE_DENORMAL or IEEE_POSITIVE_DENORMAL if
IEEE_SUPPORT_DENORMAL(X) has the value true,

IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_ZERO, IEEE_POSITIVE_ZERO or
IEEE_POSITIVE_NORMAL.

Although in most cases the value is processor dependent, the value does not vary between invocations for
any particular X kind type parameter and CLASS value.

5

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15580:1998
https://standards.iteh.ai/catalog/standards/sist/1964a89f-6830-43bd-94fc-

757d316e6267/iso-iec-tr-15580-1998

ISO/IEC 15580 : 1998(E) ISO/IEC

2.8 Elemental subroutines

The module IEEE_EXCEPTIONS contains the following elemental subroutines:

IEEE_GET_FLAG(FLAG,FLAG_VALUE) Get an exception flag.

IEEE_GET_HALTING_MODE(FLAG,HALTING) Get halting mode for an exception. The initial
halting mode is processor dependent. Halting is not necessarily immediate, but normal processing does
not continue.

IEEE_SET_FLAG(FLAG,FLAG_VALUE) Set an exception flag.

IEEE_SET_HALTING_MODE(FLAG,HALTING) Controls continuation or halting on exceptions.

2.9 Non-elemental subroutines

The module IEEE_EXCEPTIONS contains the following non-elemental subroutines:

IEEE_GET_STATUS(STATUS_VALUE) Get the current values of the set of flags that define the
current state of the floating point environment. STATUS_VALUE is of type IEEE_STATUS_TYPE.

IEEE_SET_STATUS(STATUS_VALUE) Restore the values of the set of flags that define the current
state of the floating point environment (usually the floating point status register). STATUS_VALUE is of
type IEEE_STATUS_TYPE and has been set by a call of IEEE_GET_STATUS.

The module IEEE_ARITHMETIC contains the following non-elemental subroutines:

IEEE_GET_ROUNDING_MODE(ROUND_VALUE) Get the current IEEE rounding mode.
ROUND_VALUE is of type IEEE_ROUND_TYPE.

IEEE_SET_ROUNDING_MODE(ROUND_VALUE) Set the current IEEE rounding mode.
ROUND_VALUE is of type IEEE_ROUND_TYPE. If this is invoked,
IEEE_SUPPORT_ROUNDING(ROUND_VALUE,X) must be true for any X such that
IEEE_SUPPORT_DATATYPE(X) is true.

2.10 Transformational function

The module IEEE_ARITHMETIC contains the following transformational function:

IEEE_SELECTED_REAL_KIND([P,][R]) As for SELECTED_REAL_KIND but gives an IEEE
kind.

6

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15580:1998
https://standards.iteh.ai/catalog/standards/sist/1964a89f-6830-43bd-94fc-

757d316e6267/iso-iec-tr-15580-1998

	!ûá˚�&ƒ!ÕïŁÓ¬�•§Tˆ	*Ì5aŁó�‚ÀÁ»1
ıˆ+˝|;+�º|õÎn˜Eÿ'¢�F\ã¿'Þg[słÂXp"Þñ‚¨hê{‡ç
s>>Ýë˘f¿å‘%W›?Nfß

