TECHNICAL ISO/IEC
REPORT TR 15580

First edition
1998-12-01

Information technology — Programming
languages — Fortran — Floating-point
exception handling

Technologies de l'information — Langages de programmation — Fortran —
Manipulation de I'exception du point flottant

I EC Reference number
it ® ISO/IEC TR 15580:1998(E)

ISO/IEC TR 15580:1998(E)© ISO/IEC 1998

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office « Case postale 56 « CH-1211 Geneéve 20 ¢ Switzerland
Printed in Switzerland

Foreword

ISO (the International Organization for Standardization) and IEC (the Inter-
national Electrotechnical Commission) form the specialized system for
worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical
committees established by the respective organization to deal with particu-
lar fields of technical activity. ISO and IEC technical committees collaborate
in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with 1ISO and IEC, also take part in the
work.

In the field of information technology, ISO and IEC have established a joint
technical committee, ISO/IEC JTC 1.

The main task of technical committees is to prepare International
Standards, but in exceptional circumstances a technical committee may
propose the publication of a Technical Report of one of the following types:

— type 1, when the required support cannot be obtained for the publi-
cation of an International Standard, despite repeated efforts;

— type 2, when the subject isstilliundemntechnical development or where
for any other reason there is the future but not immediate possibility of
an agreement on an International Standard;

— type 3, when a technical committee has collected data of a different
kind from that which is normally published as-an!International | Standard
(“state of the art”, for example):

Technical Reports of types 1 and 2 are subject to review within three years
of publication, to decide whether they can be transformed into International
Standards. Technical Reports of type 3 do not necessarily have to be
reviewed until the data they provide are considered to be no longer valid or
useful.

ISO/IEC TR 15580, which is a Technical Report of type 2, was prepared by
Joint Technical Committee ISO/IEC JTC 1, Information technology, Sub-
committee SC 22, Programming languages, their environments and system
software interfaces.

This Technical Report specifies an extension of the programming language
Fortran, specified by ISO/IEC 1539-1:1997.

It is the intention of ISO/IEC JTC 1/SC 22 that the semantics and syntax
described in this Technical Report be incorporated in the next revision of
ISO/IEC 1539-1:1997 exactly as they are specified here unless experience
in the implementation and use of this feature has identified any errors
which need to be corrected, or changes are required in order to achieve
proper integration, in which case every reasonable effort will be made to
minimize the impact of such integration changes on existing commercial
implementations.

O ISO/NEC ISO/IEC TR 15580: 1998(E)

| ntr oduction

Exception handling is required for the development of robust and efficient numerical software. In particular, it
is necessary in order to be able to write portable scientific libraries. In numerical Fortran programming, current
practiceisto employ whatever exception handling mechanisms are provided by the system/vendor. Thisclearly
inhibits the production of fully portable numerical libraries and programs. It is particularly frustrating now that
|EEE arithmetic (specified by IEEE 754-1985 Sandard for binary floating-point arithmetic, also published as
IEC 559:1989, Binary floating-point arithmetic for microprocessor systems) is so widely used, since built into
it are the five conditions. overflow, invalid, divide-by-zero, underflow, and inexact. Our aim is to provide
support for these conditions.

We have taken the opportunity to provide support for other aspects of the IEEE standard through a set of
elemental functions that are applicable only to |EEE data types.

This proposal involves three standard modules:

® | EEE_EXCEPTI ONS contains a derived type, some named constants of this type, and some simple
procedures. They allow the flags to be tested, cleared, set, saved, or restored.

® | EEE ARI THMETI C behaves as if it contained a USE statement for all of | EEE_EXCEPTI ONS and
provides support for other IEEE features through further derived types, named constants, and simple
procedures.

® | EEE FEATURES contains some hamed constants that permit the user to indicate which |EEE features
are essential in the application, Some processors. may execute more. slowly when certain features are
regquested.

To facilitate maximum performance, each of jthe proposed functions does very little processing of arguments.
In many cases, a processor may generate only a few inline machine code instructions rather than library calls.

In order to alow for the maximum number of processors'to-provide the maximum value to users, we do not
require |EEE conformance.A ‘vendor with'no 1 EEE hardware need not provide these modules and any request
by the user for any of them with a USE-statement will "give a compile-time diagnostic. A vendor whose
hardware does not fully conform with the |EEE standard may be unable to provide certain features. In this case,
a request for such a feature will give a compile-time diagnostic. Another possibility is that not all flags are
supported or that the extent of support varies according to the kind type parameter. The user must utilize an
inquiry function to determine if he or she can count on a specific feature of the |EEE standard.

Note that an implementor should avoid a macro implementation, as |EEE conformance is often controlled by
compiler switches. A processor which offers a switch to turn off afacility should adjust the values returned for
these inquiries. For example, a processor which allows gradual underflow to be turned off (replaced with flush
to zero) should return false for | EEE_SUPPORT_DENORMAL(X) when a source file is processed with that
option on. Naturaly it should return true when that option is not in effect.

The most important use of a floating-point exception handling facility is to make possible the development of
much more efficient software than is otherwise possible. The following ‘hypotenuse’ function, y/x+y?,
illustrates the use of the facility in developing efficient software.

REAL FUNCTI ON HYPOT(X, Y)
I Inrare circumstances this nay lead to the signaling of | EEE OVERFLOW
USE, INTRINSIC :: | EEE_ARI THVETI C
REAL X, Y
REAL SCALED X, SCALED Y, SCALED RESULT
LOG CAL, DI MENSION(2) :: FLAGS
TYPE (| EEE_FLAG TYPE), PARAMETER, DI MENSION(2) :: &
OQUT_OF_RANGE = (/ | EEE_OVERFLOW | EEE_UNDERFLOW /)
| NTRI NSI C SQRT, ABS, EXPONENT, MAX, DIG TS, SCALE
I The processor clears the flags on entry

ISO/IEC TR 15580 : 1998(E) O ISO/NEC

I Try a fast algorithmfirst
HYPOT = SQRT(X**2 + Y**2)
CALL | EEE_GET_FLAG(OUT_OF RANGE, FLAGS)
| F (ANY(FLAGS)) THEN
CALL | EEE_SET_FLAG(OUT_OF RANGE, . FALSE.)
IF (X==0.0 .OR Y==0.0) THEN
HYPOT = ABS(X) + ABS(Y)
ELSE | F (2* ABS(EXPONENT(X) - EXPONENT(Y)) > DIG TS(X)+1) THEN
HYPOT = MAX(ABS(X), ABS(Y))! one of X and Y can be ignored
ELSE I scale so that ABS(X) is near 1
SCALED X = SCALE(X, - EXPONENT(X))
SCALED Y = SCALE(Y, -EXPONENT(X))
SCALED RESULT = SQRT(SCALED X**2 + SCALED Y**2)
HYPOT = SCALE(SCALED RESULT, EXPONENT(X)) ! may cause overfl ow
END | F
END | F
I The processor resets any flag that was signaling on entry
END FUNCTI ON HYPOT

An attempt is made to evaluate this function directly in the fastest possible way. This will work almost every
time, but if an exception occurs during this fast computation, a safe but slower way evaluates the function. This
slower evaluation may involve scaling and unscaling, and in (very rare) extreme cases this unscaling can cause
overflow (after al, the true result might overflow if X and Y are both near the overflow limit).

If the overflow or underflow flagis signalingwon jentry;lit is reset’ on return by\the processor, so that earlier
exceptions are not lost.

Can dl this be accomplished without'the help of an exception handling facility? Yes, it can — in fact, the
alternative code can do the job, but of course it is much less efficient. That’s the point. The HYPOT function is
special, in this respect, in that the normal and aternative codes try to accomplish the same task. Thisis not
alwaysthe case. In fact, it very often happens that the alternative code concentrates on handling the exceptional
cases and is not able to handle all of the non-exceptional cases. When this happens, a program which cannot
take advantage of hardware flags could have a structure like the following:

if (inthe first exceptional region) then
handl e this case

else if (in the second exceptional region) then
handl e this case

el se
execute the normal code
end

But this is not only inefficient, it also inverts the logic of the computation. For other examples, see Hull,
Fairgrieve and Tang (1994) and Demmel and Li (1994).

The code for the HYPOT function can be generalized in an obvious way to compute the Euclidean norm,
VXZ+xZ+...+x2 of an n-vector; the generdization of the aternative code is not so obvious (though
straightforward) and will be much slower relative to the normal code than is the case with the HYPOT function.

In connection with reliable computation, there is a need for intrinsic conditions further to those of the IEEE
floating-point standard. Examples are:

® | NSUFFI Cl ENT_STORAGE for when the processor is unable to find sufficient storage to continue
execution.

® | NTEGER OVERFLOWand | NTEGER DI VI DE_BY_ZEROfor when an intrinsic integer operation has
avery large result or has a zero denominator.

O ISO/NEC ISO/IEC TR 15580: 1998(E)

® | NTRI NSI Cfor when an intrinsic procedure has been unsuccessful.
® SYSTEM ERROR for when a system error occurs.
This proposal has been designed to allow such enhancements in the future.

References

Demmel, JW. and Li, X. (1994). Faster Numerical Algorithms via Exception Handling. |EEE Transactions on
Computers, 43, no. 8, 983-992.

Hull, T.E., Fairgrieve, T.F., and Tang, T.P.T. (1994). Implementing complex elementary functions using
exception handling. ACM Trans. Math. Software 20, 215-244.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/AIEC TR 15580:1998
https/standards.iteh.ai/catalog/standards/sist/ 1 964a891-6830-43bd-94fc-
757d316e6267/iso-iec-tr-15580-1998

TECHNICAL REPORT O ISO/NEC | SO/IEC 15580: 1998(E)

| nfor mation technology — Programming languages — Fortran —
Floating-point exception handling

1 General

1.1 Scope

This Technical Report 'specifies“an 'extension- of 'the programming”language Fortran, specified by the
international standard ISO/IEC 1539-1:1997. Its main aim is to provide support for the five exceptions of the
| EEE standard for floating-point arithmetic, but it also provides support for other features of the | EEE standard.
A processor is permitted to provide partial support and there are facilities for enquiring about which features
are supported or requiring support of certain features.

Clause 2 of this Technical Report contains a technical description of the features. It provides an overview and
does not include all the fine details. Clause 3 contains the editorial changesto the standard and thereby provides
a complete definition.

1.2 Normative references

The following standards contain provisions which, through referencesin this text, constitute provisions of this
Technical Report. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply. However, parties to agreements based on this Technical Report are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated below. For undated
references, the latest edition of the normative document referred applies. Members of IEC and 1SO maintain
registers of currently valid International Standards.

ISO/IEC 1539-1:1997, Information technology — Programming Languages — Fortran — Part 1. Base language.
IEC 559:1989, Binary floating-point arithmetic for microprocessor systems.

Since IEC 559:1989 was originally |EEE 754-1985 Sandard for binary floating-point arithmetic, and iswidely
known by this name, we refer to it as the | EEE standard in this Technical Report.

I SO/IEC 15580 : 1998(E) O ISO/NEC

2 Technical specification

2.1 The modd

This proposal is based on the IEEE model with flags for the floating-point exceptions (invalid, overflow,
divide-by-zero, underflow, inexact), a flag for the rounding mode (nearest, up, down, to-zero), and flags for
whether halting occurs following exceptions. It is not necessary for the hardware to have any such flags (they
may be simulated by software) or for it to support al the modes. Inquiry procedures are available to alow a
program to determine the extent of support. Inquiries are in terms of reals, but the same level of support is
provided for the corresponding complex kind.

Some hardware may be able to provide no support of these features or only partial support. It may execute
faster with compiled code that does not support all the features. This proposal therefore involvesthreeintrinsic
modules. | EEE_EXCEPTI ONS is for the exceptions and the minimum requirement is for the support of
overflow and divide-by-zero for all kinds of real and complex data. | EEE_ARI THVETI C behaves as if it
contained a USE statement for all of | EEE_EXCEPTI ONS and provides support for other |IEEE features.
| EEE_FEATURES contains some named constants that permit the user to indicate which features are essentia
in the application. A programisrequired to fail if arequested feature is not available. The modules contain five
derived types (subclause 2.3), named constants to control the level of support (subclause 2.4), and a collection
of procedures (subclauses 2.5 to 2.10). None of the procedures is permitted as an actual argument.

2.2 The USE statement for.an iatrinsicmodule

New syntax on the USE statement proyides control over whether it isintended to access an intrinsic module:
USE, INTRINSIC :: 1'EEE_ARI‘THVETIC

or not:
USE, NON_INTRINSIC :: MW/ VEEE.AR'THVETI C

The | NTRI NSI C statement is not extended. For,the old form:
USE | EEE_ARI THVETI C
the processor looks first for a non-intrinsic module.

2.3 Thederived types and data objects
The module | EEE_EXCEPTI ONS contains the derived types:

® | EEE FLAG TYPE, for identifying a particular exception flag. Its only possible values are those of
named constants defined in the module | EEE | NVALI D, | EEE_OVERFLOW
| EEE_DI VI DE_BY_ZERQ, | EEE_UNDERFLOW and | EEE_| NEXACT. The modules also contains the
named array constants
| EEE_USUAL = (/1 EEE_OVERFLOW | EEE_DI VI DE_BY_ZERO, | EEE_I NVALID/)
and
| EEE_ALL = (/| EEE_USUAL, | EEE_UNDERFLOW | EEE_| NEXACT/)

® | EEE_STATUS_TYPE, for saving the current floating point status.
The module | EEE_ARI THMETI C contains the derived types:

® | EEE_CLASS_TYPE, for identifying a class of floating-point values. Its only possible values are those
of named constants defined in the module:
| EEE_SI GNALI NG_NAN, | EEE_QUI ET_NAN, | EEE_NEGATI VE_I NF,
| EEE_NEGATI VE_NORVAL, | EEE_NEGATI VE_DENORMAL, | EEE_NEGATI VE_ZERQ,
| EEE_POCsI Tl VE_ZERQO, | EEE_PCSI Tl VE_DENORVAL, | EEE_PGCSI Tl VE_NORVMAL, and
| EEE_PCSI Tl VE_I NF.

O ISO/NEC | SO/IEC 15580: 1998(E)

® | EEE ROUND TYPE, for identifying a particular rounding mode. Its only possible values are those of
named constants defined in the module: | EEE_NEAREST, | EEE TO ZERO, | EEE UP, and
| EEE_DOWN for the IEEE modes; and | EEE_OTHER for any other mode.

The module | EEE_FEATURES contains the derived type:

® | EEE_FEATURES_TYPE, for expressing the need for particular |EEE features. Its only possible values
are those of named constants defined in the module: | EEE_DATATYPE, | EEE_DENORMAL,
| EEE_DI VI DE, | EEE_HALTI NG, | EEE_| NEXACT_FLAG, | EEE_I NF, | EEE_| NVALI D_FLAG
| EEE_NAN, | EEE_ROUNDI NG, | EEE_SQRT, and | EEE_UNDERFLOW FLAG

24 Theleve of support

When | EEE_EXCEPTIONS or |EEE ARITHVETIC is accessible, | EEE_OVERFLOW and
| EEE DI VI DE_BY_ZERO are supported in the scoping unit for all kinds of real and complex data. Which
other exceptions are supported may be determined by the function | EEE_SUPPORT_FLAG, see subclause
2.6. Whether control of halting is supported may be determined by the function | EEE_SUPPORT_HALTI NG
The extent of support of the other exceptions may be influenced by the accessibility of the named constants
| EEE_| NEXACT_FLAG | EEE | NVALI D_FLAG and | EEE_UNDERFLOW FLAG of the module
| EEE_FEATURES. If a scoping unit has access to | EEE_UNDERFLOW FLAG of | EEE_FEATURES, the
scoping unit must support underflow and return true from | EEE._ SUPPORT _FLAG | EEE_UNDERFLOW X)
for at least one kind of real. Similarly, if | EEE_| NEXACT_FLAGor | EEE_| NVALI D_FLAG s accessible,
the scoping unit must support the exception and return true from the carresponding inquiry for at least one kind
of real. Also, if | EEE_HALTI'NGI's accessible, the scoping-unit must'support.control of halting and return true
from | EEE_SUPPORT_HALTI N& FLAG). for the flag,

If a scoping unit does not access | EEE_EXCEPTI ONS or | EEE_ARI THVETI C, the level of support is
processor dependent, and need not include suppert for, any.exceptions. If aflag is signaling on entry to such a
scoping unit, the processor, ensures that it is signaling onexit. |fa flagis-quiet.onentry to such a scoping unit,
whether it is signaling on exit is processor;dependent.

For processors with IEEE arithmetic, further IEEE support is available through the module
| EEE_ARI THVETI C. The extent of support may be influenced by the accessibility of the named constants of
the module | EEE_FEATURES. If a scoping unit has accessto | EEE_DATATYPE of | EEE_FEATURES, the
scoping unit must support |IEEE arithmetic and return true from | EEE_SUPPORT_DATATYPE(X) (see
subclause 2.6) for at least one kind of real. Similarly, if | EEE_DENORMAL, | EEE_DI VI DE, | EEE_| NF,
| EEE_NAN, | EEE_ROUNDI NG, or | EEE_SQRT is accessible, the scoping unit must support the feature and
return true from the corresponding inquiry function for at least one kind of real. In the case of
| EEE_ROUNDI NG, it must return true for all the rounding modes | EEE_NEAREST, | EEE TO ZERQ,
| EEE_UP, and | EEE_DOWN.

Execution may be slowed on some processors by the support of some features. If | EEE_EXCEPTI ONS or
| EEE_ARI THVETI Cis accessed but | EEE_FEATURES is not accessed, the vendor is free to choose which
subset to support. The processor’s fullest support is provided when all of | EEE_FEATURES is accessed:

USE | EEE_ARI THVETI C; USE | EEE_FEATURES

but execution may then be slowed by the presence of a feature that is not needed. In all cases, the extent of
support may be determined by the inquiry functions of subclause 2.6.

If aflag issignaling on entry to a procedure, the processor will set it to quiet on entry and restore it to signaling
on return.

If aflagis quiet on entry to a procedure with accessto | EEE_EXCEPTI ONS or | EEE_ARI THVETI Cand is
signaling on return, the processor will not restore it to quiet.

In a procedure, the processor ensures that the flags for halting have the same values on return as on entry.

| SO/IEC 15580 : 1998(E) O ISO/IEC
In a procedure, the processor ensures that the flags for rounding have the same values on return as on entry.

2.5 The exception flags

The flags are initially quiet and signal when an exception occurs. The value of a flag is determined by the
elemental subroutine

| EEE_GET_FLAG (FLAG FLAG _VALUE)

where FLAGIs of type | EEE_FLAG _TYPE and FLAG_VALUE is of type default LOG CAL. Being elemental
allows an array of flag values to be obtained at once and obviates the need for alist of flags.

Flag values may be assigned by the elemental subroutine
| EEE_SET_FLAG (FLAG FLAG_VALUE)

An exception must not signal if this could arise only during execution of a process further to those required or
permitted by the standard. For example, the statement

IF (F(X)>0.0) Y =1.0/Z
must not signal | EEE_DI VI DE_BY_ZEROwhen both F(X) and Z are zero and the statement
VWHERE(A>0.0) A = 1.0/ A

must not signal | EEE_DI VI DE_BY_ZERQO. On the other hand, when X has the value 1.0 and Y has the value
0.0, the expression

X>0.00001 . OR X/ Y>0.00001
is permitted to cause the signaling of I'EEE DI VI'DE "BY _ZERO.

2.6 Inquiry functionsfor-the featur.es supported
The module | EEE_EXCEPTI ONS contains the following inquiry functions:

® | EEE SUPPCORT_FLAGQ FLA{ , X]) Trueif the processor supports an exception flag for al reas (X
absent) or for reals of the same kind type parameter as the argument X.

® | EEE SUPPORT_HALTI N FLAG True if the processor supports the ability to control during
program execution whether to abort or continue execution after an exception.

The module | EEE_ARI THMETI C contains the following inquiry functions:

® | EEE_SUPPORT_DATATYPE([X]) True if the processor supports |IEEE arithmetic for al reas (X
absent) or for reals of the same kind type parameter as the argument X. Here support means employing an
IEEE data format and performing the operations of +, —, and * as in the IEEE standard whenever the
operands and result all have normal values.

® | EEE_SUPPORT_DENORMAL([X]) True if the processor supports the IEEE denormalized numbers
for all reals (X absent) or for reals of the same kind type parameter as the argument X.

® | EEE SUPPORT DI VI DE([X]) Trueif the processor supports divide with the accuracy specified by
the |EEE standard for all reals (X absent) or for reals of the same kind type parameter as the argument X.

® | EEE SUPPORT | NF([X]) True if the processor supports the |EEE infinity facility for all reals (X
absent) or for reals of the same kind type parameter as the argument X.

® | EEE_SUPPORT_NAN([X]) True if the processor supports the IEEE Not-A-Number facility for all
reals (X absent) or for reals of the same kind type parameter as the argument X.

® | EEE SUPPORT_ROUNDI NG ROUND _VALUE[, X]) True if the processor supports a particular
rounding mode for all reals (X absent) or for reals of the same kind type parameter as the argument X.

O ISO/NEC | SO/IEC 15580: 1998(E)

Here, support includes the ability to change the mode by
CALL | EEE_SET_ROUNDI NG_MODE(ROUND_VAL UE)

® | EEE_SUPPORT_SQRT([X]) Trueif the processor supports |EEE sguare root for all reals (X absent)
or for reals of the same kind type parameter as the argument X.

® | EEE SUPPORT_STANDARD([X]) True if the processor supports all the IEEE facilities defined in
this Technical Report for all reals (X absent) or for reals of the same kind type parameter as the argument
X.

2.7 Elemental functions

The module | EEE_ARI THVETI C contains the following elemental functions for reals X and Y for which
| EEE_SUPPORT_DATATYPE(X) and | EEE_SUPPORT_DATATYPE(Y) are true:

® | EEE _CLASS(X) Returnsthe IEEE class (see subclause 2.3 for the possible values).
® | EEE COPY_SI GN(X, Y) IEEE copysign function, that is X with the sign of Y.

® | EEE | S FI NI TE(X) IEEE finite function. Trueif | EEE_CLASS(X) has one of the values
| EEE_NEGATI VE_NORMAL, | EEE_NEGATI VE_DENORVMAL, | EEE_NEGATI VE_ZERQ,
| EEE_PGSI Tl VE_ZERQO, | EEE_POSI Tl VE_DENORMAL, | EEE_PCSI Tl VE_NORVAL.

| EEE_| S_NAN(X) Trueifitheyaueis|EEE/Not:aNumber.

| EEE_| S_NEGATI VE(X) True if/the value is negative (including negative zero).

| EEE | S NORMAL(X) Trueif the value is a normal number.

| EEE_LOGB(X) |EEE logb function, that is, the unbiased exponent of X.

| EEE_NEXT_AFTER(X, Y) Returns the’next representable neighbor of X in the direction toward Y.

| EEE_REM X, Y) ThelEEE REM function, that is X — Y* N, where N is the integer nearest to the exact
value X/ Y.

| EEE_RI NT(X) Round to an integer value according to the current rounding mode.
| EEE_SCALB (X,l) Returns 2' X.
| EEE_UNORDERED(X, Y) |EEE unordered function. Trueif X or Y isaNaN and false otherwise.

| EEE VALUE(X, CLASS) Generate avalue of agiven |IEEE class. The value of CLASS is permitted to
be

® | EEE_SI GNALI NG NAN or | EEE_QUI ET_NAN if | EEE_SUPPORT_NAN(X) has the value
true,

® | EEE_NEGATI VE_I NF or | EEE_POSI Tl VE_I NF if | EEE_SUPPORT | NF(X) has the
vaue true,

® | EEE_NEGATI VE_DENORMAL or | EEE_POSI Tl VE_DENORMAL if
| EEE_SUPPORT_DENORMAL(X) has the value true,

® | EEE_NEGATI VE_NORMAL, | EEE_NEGATI VE_ZERQO, | EEE_PGCSI Tl VE_ZEROor
| EEE_POSI Tl VE_NORNVAL.

Although in most cases the value is processor dependent, the value does not vary between invocations for
any particular X kind type parameter and CLASS value.

I SO/IEC 15580 : 1998(E) O ISO/NEC

2.8 Elemental subroutines
The module | EEE_EXCEPTI ONS contains the following elemental subroutines:
® | EEE GET_FLAG FLAG, FLAG VALUE) Get an exception flag.

® | EEE_GET_HALTI NG_MODE(FLAG, HALTI NG Get hating mode for an exception. The initial
halting mode is processor dependent. Halting is not necessarily immediate, but normal processing does
not continue.

® | EEE SET FLAG FLAG FLAG VALUE) Set an exception flag.
® | EEE SET HALTI NG _MODE(FLAG HALTI NG Controls continuation or halting on exceptions.

2.9 Non-elemental subroutines
The module | EEE_EXCEPTI ONS contains the following non-elemental subroutines:

® | EEE GET_STATUS(STATUS VALUE) Get the current values of the set of flags that define the
current state of the floating point environment. STATUS VALUE is of type | EEE_STATUS TYPE.

® | EEE SET STATUS(STATUS VALUE) Restore the values of the set of flags that define the current
state of the floating point environment (usually the floating point status register). STATUS VALUE is of
type | EEE_STATUS_TYPE and has been set by acall of | EEE_GET_STATUS.

The module | EEE_ARI THVETI C contains the following non-elemental subroutines:

® | EEE_GET_ROUNDI NG “MIDE(RGUND VALUE)- "/ Get "“the V current” IEEE rounding mode.
ROUND_VALUE is of type | EEE__ ROUND.JTYPE:

® | EEE SET ROUNDI NG MODE(ROUND VALUE) Set the current |EEE rounding mode.
ROUND _VALUE is of type | EEE -ROUND TYPE. If this is invoked,
| EEE_SUPPORT_ROUNDI NG(ROUND. VALUE; X)- i must:ochesotrue.ofor any X such that
| EEE_SUPPORT_DATATYPE(X)7is true.

2.10 Transformational function
The module | EEE_ARI THMETI C contains the following transformational function:

® | EEE_SELECTED REAL_KIND([P,][R]) As for SELECTED REAL_KI ND but gives an |EEE
kind.

	!ûá˚�&ƒ!ÕïŁÓ¬�•§Tˆ	*Ì5aŁó�‚ÀÁ»1
ıˆ+˝|;+�º|õÎn˜Eÿ'¢�F\ã¿'Þg[słÂXp"Þñ‚¨hê{‡ç
s>>Ýë˘f¿å‘%W›?Nfß

