
B C Reference number
ISO/IEC TR 15581:1998(E)

TECHNICAL
REPORT

ISO/IEC
TR 15581

First edition
1998-12-01

Information technology — Programming
languages — Fortran — Enhanced data
type facilities

Technologies de l'information — Langages de programmation — Fortran —
Facilités de type de données améliorées

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15581:1998
https://standards.iteh.ai/catalog/standards/sist/83193696-5ff8-40db-9bb0-

7ea3ba8831fb/iso-iec-tr-15581-1998

ISO/IEC TR 15581:1998(E)

© ISO/IEC 1998

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office • Case postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

ii

Contents

Page

1 General .. 1

1.1 Scope.. 1

1.2 Normative reference ... 1

2 Requirements ... 2

2.1 Allocatable Attribute Regularization 2

2.2 Allocatable Arrays as Dummy Arguments 2

2.3 Allocatable Array Function Results 3

2.4 Allocatable Array Components ... 4

3 Required editorial changes to ISO/IEC 1539-1:1997 7

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15581:1998
https://standards.iteh.ai/catalog/standards/sist/83193696-5ff8-40db-9bb0-

7ea3ba8831fb/iso-iec-tr-15581-1998

© ISO/IEC ISO/IEC TR 11172-5 : 1998 (E)

ii

Foreword

ISO (the International Organization for Standardization) and IEC (the Inter-
national Electrotechnical Commission) form the specialized system for
worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical
committees established by the respective organization to deal with particu-
lar fields of technical activity. ISO and IEC technical committees collaborate
in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the
work.

In the field of information technology, ISO and IEC have established a joint
technical committee, ISO/IEC JTC 1.

The main task of technical committees is to prepare International
Standards, but in exceptional circumstances a technical committee may
propose the publication of a Technical Report of one of the following types:

— type 1, when the required support cannot be obtained for the publi-
cation of an International Standard, despite repeated efforts;

— type 2, when the subject is still under technical development or where
for any other reason there is the future but not immediate possibility of
an agreement on an International Standard;

— type 3, when a technical committee has collected data of a different
kind from that which is normally published as an International Standard
(“state of the art”, for example).

Technical Reports of types 1 and 2 are subject to review within three years
of publication, to decide whether they can be transformed into International
Standards. Technical Reports of type 3 do not necessarily have to be
reviewed until the data they provide are considered to be no longer valid or
useful.

ISO/IEC TR 15581, which is a Technical Report of type 2, was prepared by
Joint Technical Committee ISO/IEC JTC 1, Information technology, Sub-
committee SC 22, Programming languages, their environments and system
software interfaces.

This Technical Report specifies an extension of the programming language
Fortran, specified by ISO/IEC 1539-1:1997.

It is the intention of ISO/IEC JTC 1/SC 22 that the semantics and syntax
described in this Technical Report be incorporated in the next revision of
ISO/IEC 1539-1:1997 exactly as they are specified here unless experience
in the implementation and use of this feature has identified any errors
which need to be corrected, or changes are required in order to achieve
proper integration, in which case every reasonable effort will be made to
minimize the impact of such integration changes on existing commercial
implementations.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15581:1998
https://standards.iteh.ai/catalog/standards/sist/83193696-5ff8-40db-9bb0-

7ea3ba8831fb/iso-iec-tr-15581-1998

ISO/IEC TR 15581:1998(E) © ISO/IEC

iv

Introduction

There are many situations when programming in Fortran where it is necessary to allocate and deallocate
arrays of variable size but the full power of pointer arrays is unnecessary and undesirable. In such
situations the abilities of a pointer array to alias other arrays and to have non-unit (and variable at
execution time) strides are unnecessary, and they are undesirable because this limits optimization,
increases the complexity of the program, and increases the likelihood of memory leakage. The
ALLOCATABLE attribute solves this problem but can currently only be used for locally stored arrays,
a very significant limitation. The most pressing need is for this to be extended to array components;
without allocatable array components it is overwhelmingly difficult to create opaque data types with a
size that varies at runtime without serious performance penalties and memory leaks.

A major reason for extending the ALLOCATABLE attribute to include dummy arguments and function
results is to avoid introducing further irregularities into the language. Furthermore, allocatable dummy
arguments improve the ability to hide inessential details during problem decomposition by allowing the
allocation and deallocation to occur in called subprograms, which is often the most natural position.
Allocatable function results ease the task of creating array functions whose shape is not determined
initially on function entry, without negatively impacting performance.

This extension is being defined by means of a Technical Report in the first instance to allow early
publication of the proposed definition. This is to encourage early implementation of important extended
functionalities in a consistent manner and will allow extensive testing of the design of the extended
functionality prior to its incorporation into the language by way of the revision of ISO/IEC 1539-1.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15581:1998
https://standards.iteh.ai/catalog/standards/sist/83193696-5ff8-40db-9bb0-

7ea3ba8831fb/iso-iec-tr-15581-1998

TECHNICAL REPORT © ISO/IEC ISO/IEC TR 15581:1998(E)

1

Information technology - Programming languages - Fortran -
Enhanced data type facilities

1 General
1.1 Scope

This Technical Report specifies anextension to the data-type facilities of the programming language
Fortran. The current Fortran language is specified by ISO/IEC 1539-1 : 1997. The proposed extension
allows dummy arguments, function results, and components of derived types to be allocatable arrays.

Clause 2 of this technical report contains ageneral informal but precise description of the proposed
extended functionalities. Clause 3 contains detailed editorial changes which if applied to the current
International Standard would implement the revised language specification.

1.2 Normative reference

The following normative document contains provisions which, through reference in this text,
constitute provisions of this Technical Report. For dated references, subsequent amendments to, or
revisions of, any of these publications do not apply. However, parties to agreements based on this
Technical Report are encouraged to investigate the possibility of applying the most recent edition
of the normative documentindicated below. For undated references, the latest edition of the normative
document referred to applies. Members of ISO and IEC maintain registers of currently valid Inter-
national Standards.

ISO/IEC 1539-1 : 1997 Information technology - Programming languages - Fortran - Part 1: Base language.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15581:1998
https://standards.iteh.ai/catalog/standards/sist/83193696-5ff8-40db-9bb0-

7ea3ba8831fb/iso-iec-tr-15581-1998

ISO/IEC TR 15581:1998(E) © ISO/IEC

2

2 Requirements

The following subclauses contain a general description of the extensions required to the syntax and
semantics of the current Fortran language to provide facilities for regularization of the
ALLOCATABLE attribute.

2.1 Allocatable Attribute Regularization

In order to avoid irregularities in the language, the ALLOCATABLE attribute needs to be allowed for
all data entities for which it makes sense. Thus, this attribute which was previously limited to locally
stored array variables is now allowed on
• array components of structures,
• dummy arrays, and
• array function results.

Allocatable entities remain forbidden from occurring in all places where they may be storage-associated
(COMMON blocks and EQUIVALENCE statements). Allocatable array components may appear in
SEQUENCE types, but objects of such types are then prohibited from COMMON and
EQUIVALENCE.

The semantics for the allocation status of an allocatable entity remain unchanged:
• If it is in a main program or has the SAVE attribute, it has an initial allocation status of not

currently allocated. Its allocation status changes only as a result of ALLOCATE and
DEALLOCATE statements.

• If it is a module variable without the SAVE attribute, the initial allocation status is not currently
allocated and the allocation status may become not currently allocated (by automatic deallocation)
whenever execution of a RETURN or END statement results in no active procedure having access to
the module.

• If it is a local variable (not accessed by use or host association) and does not have the SAVE
attribute, the allocation status becomes not currently allocated on entry to the procedure. On exit
from this procedure, if it is currently allocated it is automatically deallocated and the allocation
status changes to not currently allocated.

Since an allocatable entity cannot be an alias for an array section (unlike pointer arrays), it may always
be stored contiguously.

2.2 Allocatable Arrays as Dummy Arguments

An allocatable dummy argument array shall have associated with it an actual argument which is also an
allocatable array.

On procedure entry the allocation status of an allocatable dummy array becomes that of the associated
actual argument. If the dummy argument is not INTENT(OUT) and the actual argument is currently
allocated, the value of the dummy argument is that of the associated actual argument.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15581:1998
https://standards.iteh.ai/catalog/standards/sist/83193696-5ff8-40db-9bb0-

7ea3ba8831fb/iso-iec-tr-15581-1998

© ISO/IEC ISO/IEC TR 15581:1998(E)

3

While the procedure is active, an allocatable dummy argument array that does not have INTENT(IN)
may be allocated, deallocated, defined, or become undefined. Once any of these events have occurred
no reference to the associated actual argument via another alias is permitted .

On exit from the routine the actual argument has the allocation status of the allocatable dummy
argument (there is no change, of course, if the allocatable dummy argument has INTENT(IN)). The
usual rules apply for propagation of the value from the dummy argument to the actual argument.

No automatic deallocation of the allocatable dummy argument occurs as a result of execution of a
RETURN or END statement in the procedure of which it is a dummy argument.

Note that an INTENT(IN) allocatable dummy argument array cannot have its allocation status altered
within the called procedure. Thus the main difference between such a dummy argument and a normal
dummy array is that it might be unallocated on entry (and throughout execution of the procedure).

Example

SUBROUTINE LOAD(ARRAY, FILE)
REAL, ALLOCATABLE, INTENT(OUT) :: ARRAY(:, :, :)
CHARACTER(LEN=*), INTENT(IN) :: FILE
INTEGER UNIT, N1, N2, N3
INTEGER, EXTERNAL :: GET_LUN
UNIT = GET_LUN() ! Returns an unused unit number
OPEN(UNIT, FILE=FILE, FORM=’UNFORMATTED’)
READ(UNIT) N1, N2, N3
IF (ALLOCATED(ARRAY)) DEALLOCATE(ARRAY)
ALLOCATE(ARRAY(N1, N2, N3))
READ(UNIT) ARRAY
CLOSE(UNIT)

END SUBROUTINE LOAD

2.3 Allocatable Array Function Results

An allocatable array function shall have an explicit interface.

On entry to an allocatable array function, the allocation status of the result variable becomes not
currently allocated.

The function result variable may be allocated and deallocated any number of times during the execution
of the function; however, it shall be currently allocated and have a defined value on exit from the
function. Automatic deallocation of the result variable does not occur immediately on exit from the
function, but after execution of the statement in which the function reference occurs.1

1 This storage can thus be reclaimed at the same time as that of array temporaries and the results of explicit-
shape-spec functions referenced in the expression.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15581:1998
https://standards.iteh.ai/catalog/standards/sist/83193696-5ff8-40db-9bb0-

7ea3ba8831fb/iso-iec-tr-15581-1998

ISO/IEC TR 15581:1998(E) © ISO/IEC

4

Example

FUNCTION INQUIRE_FILES_OPEN() RESULT(OPENED_STATUS)
 LOGICAL,ALLOCATABLE :: OPENED_STATUS(:)
 INTEGER I,J
 LOGICAL TEST
 DO I=1000,0,-1
 INQUIRE(UNIT=I,OPENED=TEST,ERR=100)
 IF (TEST) EXIT
100 CONTINUE
 END DO
 ALLOCATE(OPENED_STATUS(0:I))
 DO J=0,I
 INQUIRE(UNIT=J,OPENED=OPENED_STATUS(J))
 END DO
END FUNCTION INQUIRE_FILES_OPEN

2.4 Allocatable Array Components

Allocatable array components are defined to be ultimate components just as pointer components are,
because the value (if any) is stored separately from the rest of the structure and this storage does not
exist (because the array is unallocated) when the structure is created. As with ultimate pointer
components, variables containing ultimate allocatable array components are forbidden from appearing
directly in input/output lists - the user shall list any allocatable array or pointer component for i/o.

As per allocatable arrays currently, they are forbidden from storage association contexts (so any
variable containing an ultimate allocatable array component cannot appear in COMMON or
EQUIVALENCE); this maintains the clarity and optimizability of allocatable arrays. However,
allocatable array components are permitted in SEQUENCE types, which allows the same type to be
defined separately in more than one scoping unit.

Deallocation of a variable containing an ultimate allocatable array component automatically deallocates
all such components of the variable that are currently allocated.

In a structure constructor for a derived type containing an allocatable array component, the expression
corresponding to the allocatable array component must be one of the following:
• an argumentless reference to the intrinsic function NULL(); the allocatable array component

receives the allocation status of not currently allocated.
• a variable that is itself an allocatable array; the allocatable array component receives the allocation

status of the variable, and, if allocated, the shape and value of the variable.
• any other array expression; the allocatable array component receives the allocation status of

currently allocated with the same shape and value as the expression.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15581:1998
https://standards.iteh.ai/catalog/standards/sist/83193696-5ff8-40db-9bb0-

7ea3ba8831fb/iso-iec-tr-15581-1998

© ISO/IEC ISO/IEC TR 15581:1998(E)

5

For intrinsic assignment of objects of a derived type containing an allocatable array component, the
allocatable array component of the variable on the left-hand-side receives the allocation status and, if
allocated, the shape and value of the corresponding component of the expression. This occurs as if the
following sequence of steps is carried out:2

1. If the component of the variable is currently allocated, it is deallocated.
2. If the corresponding component of the expression is currently allocated, the component of the

variable is allocated with the same shape. The value of the component of the expression is then
assigned to the corresponding component of the variable using intrinsic assignment.

Note that this definition of assignment facilitates certain optimizations when the allocatable array component
of the expression is allocated. In particular:
1. If the corresponding component of the variable is allocated with the same (or larger) size, its storage can

be re-used without the overhead of an additional allocation or deallocation;
2. If the expression is a function reference, the processor can simply copy the descriptor instead of the

allocatable array contents and omit the deallocation of this component.

This ensures that any pointers that point to the previous contents of the allocatable array component of the
variable become undefined. Implementations are thus free to skip the allocation-deallocation (or not) when the
component of the variable happens to be allocated with the same shape as the corresponding component of the
expression, whichever is most efficient.

iTeh STANDARD PREVIEW
(standards.iteh.ai)

ISO/IEC TR 15581:1998
https://standards.iteh.ai/catalog/standards/sist/83193696-5ff8-40db-9bb0-

7ea3ba8831fb/iso-iec-tr-15581-1998

	�ôf~ÿpâ#bE\vÀÕ*‘ı¯�Áwq¼�¦Åÿ~“î?›í»__#\—äêÏ_IõŸWÂ˛‘bÿ_¿&zÖ»Û	¼ûuË¬-�n••ù_¾Ã.lÌ�ÊÄ^§*Zˇ&˝OõxÄÝ

