TECHNICAL ISO/IEC
REPORT TR 15581

First edition
1998-12-01

Information technology — Programming
languages — Fortran — Enhanced data
type facilities

Technologies de l'information — Langages de programmation — Fortran —
Facilités de type de données améliorées

I EC Reference number
it ® ISO/IEC TR 15581:1998(E)

ISO/IEC TR 15581:1998(E)

Contents

Page

2 o [1T (=T 41T] £ SRRN
2.1 Allocatable Attribute Regularizationccccccvvvvnvnnnnes
2.2 Allocatable Arrays as Dummy Arguments
2.3 Allocatable Array Function Results.............cccoeeeeeeeieieeennn,
2.4 Allocatable Array COmMpoNeNtsccceeeeeeeeeeeeeeeeeeeeee,

3 Required editorial changes to ISO/IEC 1539-1:1997

N R WONDNMNDN PR R

© ISO/IEC 1998

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office « Case postale 56 « CH-1211 Genéve 20 « Switzerland
Printed in Switzerland

© ISO/IEC

Foreword

ISO (the International Organization for Standardization) and IEC (the Inter-
national Electrotechnical Commission) form the specialized system for
worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical
committees established by the respective organization to deal with particu-
lar fields of technical activity. ISO and IEC technical committees collaborate
in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with 1ISO and IEC, also take part in the
work.

In the field of information technology, ISO and IEC have established a joint
technical committee, ISO/IEC JTC 1.

The main task of technical committees is to prepare International
Standards, but in exceptional circumstances a technical committee may
propose the publication of a Technical Report of one of the following types:

— type 1, when the required support cannot be obtained for the publi-
cation of an International Standard, despite repeated efforts;

— type 2, when the subject is stillunder technical development or. where
for any other reason there is the future but not immediate possibility of
an agreement on an International Standard;

— type 3, when a technical committee has collected data of a different
kind from that which is normally published @s/an Internationalb Standard
(“state of the art”, for example): R

Technical Reports of types 1 and 2 are subject to review within three years
of publication, to decide whether they can be transformed into International
Standards. Technical Reports of type 3 do not necessarily have to be
reviewed until the data they provide are considered to be no longer valid or
useful.

ISO/IEC TR 15581, which is a Technical Report of type 2, was prepared by
Joint Technical Committee ISO/IEC JTC 1, Information technology, Sub-
committee SC 22, Programming languages, their environments and system
software interfaces.

This Technical Report specifies an extension of the programming language
Fortran, specified by ISO/IEC 1539-1:1997.

It is the intention of ISO/IEC JTC 1/SC 22 that the semantics and syntax
described in this Technical Report be incorporated in the next revision of
ISO/IEC 1539-1:1997 exactly as they are specified here unless experience
in the implementation and use of this feature has identified any errors
which need to be corrected, or changes are required in order to achieve
proper integration, in which case every reasonable effort will be made to
minimize the impact of such integration changes on existing commercial
implementations.

ISO/IEC TR 11172-5 : 1998 (E)

ISO/IEC TR 15581:1998(E) © ISO/IEC

Introduction

There are many situations when programming in Fortran where it is necessary to allocate and deallocate
arrays ofvariable sizebut the full power of pointearrays isunnecessary and undesirable. In such
situations the abilities of a pointarray to aliasotherarraysand to have non-unit (and variable at
execution time)strides are unnecessary, atmgy are undesirable because this limits optimization,
increases the complexity of th@ogram, and increases thikelihood of memoryleakage. The
ALLOCATABLE attribute solves this problerbut cancurrentlyonly be usedor locally storedarrays,

a very significant limitation. The most pressimged isfor this to beextended taarray components;

without allocatablearray components it is overwhelminggifficult to create opaqudatatypes with a

size that varies at runtime without serious performance penalties and memory leaks.

A major reason foextending theALLOCATABLE attribute toinclude dummyarguments and function
results is to avoid introducing further irregularities into the language. Furthermore, allodataiyig
arguments improve the ability tode inessentiadletails during problem decomposition by allowing the
allocation and deallocation to occur in caltbprogramswhich is often the mostatural position.
Allocatable function results ease ttask of creatingarray functions whoseshape is notletermined
initially on function entry, without negatively impacting performance.

This extension is being defined by -means afechnical, Reportying théirst;instance to allow early
publication of the proposed definitiohhis is to encourage eatipplementation of importaréxtended
functionalities in a consistent manner and Wil ;allow extensive; testing of the design eftéheed
functionality prior to its incorporation into the language by way of the revision of ISO/IEC 1539-1.

TECHNICAL REPORT © ISO/IEC ISO/IEC TR 15581:1998(E)

| nfor mation technology - Programming languages - Fortran -
Enhanced data typefacilities

1 General
1.1 Scope

This Technical Report specifies antension to the data-type facilities of the programming language
Fortran The current Fortratanguage is specified B$O/IEC 1539-1 : 1997The proposed extension
allows dummy arguments, function results, and components of derived types to be allocatable arrays.

Clause 2 of this technical report containgemeral informabut precise description of the proposed
extended functionalitieClause 3 containdetailed editorial changes which if applied te turrent
International Standard would implement the revised language specification.

1.2 Normative reference

The following normative, documentontans provisionswhichj, through reference in this text,
constitute provisionsf this Technical Report. For dated references, subsequent amendments to, o
revisions of, any of thegeublications(do) nat apply: However, parties to agreements loastds
Technical Report arencouraged to investigate the possibility of applying the most recent edition
of the normativelocumenindicated;below.Forundated references, the latest edition of the normative
documentreferred;to appliesiciMembers &0 andEC maintain registers of currently valid Inter
national Standards. '

ISO/IEC 15391 : 1997 Information technology - Programming languages - Fortran - Part 1: Base language.

ISO/IEC TR 15581:1998(E) © ISO/IEC

2 Requirements

The following subclauses contain a general description of the extensions required to the syntax and
semantics of the currenFortran language to provide facilitiesfor regularization of the
ALLOCATABLE attribute.

2.1 Allocatable Attribute Regularization

In order to avoid irregularities in the language, the ALLOCATABitEibuteneeds to be allowed for
all dataentitiesfor which it makes senseThus, this attributevhich was previouslhylimited to locally
stored array variables is now allowed on

« array components of structures,

e dummy arrays, and

» array function results.

Allocatable entities remain forbidden from occurring in all plagksre they may be storage-associated
(COMMON blocks and EQUIVALENCE statements). Allocatableay components magppear in
SEQUENCE types, butobjects of such typesare then prohibited from COMMON and
EQUIVALENCE.

The semantics for the allocation status/of an‘allocatable entity remain‘unchanged:

« If it is in a main program ohasthe, SAVE attribute, .it:has :an initial allocatiostatus of not
currently allocated. Its allocation status changes only as aesult of ALLOCATE and
DEALLOCATE statements.

» If it is a modulevariable without the SAVEattribute, the initial allocationstatus isnot currently
allocated and the allocati@tatusmay, becomanot currently allocated (by automatic deallocation)
whenever execution of a RETURN or END statement results in no active procedure having access to
the module.

o If it is a local variable (not accessed by use or host association) and does not have the SAVE
attribute,the allocationstatusbecomes noturrently allocated on entry to the procedure. On exit
from this procedure, if it is currently allocated it is automatically deallocated and the allocation
status changes to not currently allocated.

Since an allocatable entity cannot beadias for an arragection (unlike pointearrays), itmay always
be stored contiguously.

2.2 Allocatable Arrays as Dummy Arguments

An allocatable dummy argument array shall have associated witladt@aargument which iglso an
allocatable array.

On procedure entry the allocatistatus of arallocatabledummyarray becomeshat ofthe associated
actual argument. the dummyargument is not INTENT(OUT) antthe actualargument is currently
allocated, the value of the dummy argument is that of the associated actual argument.

© ISO/IEC ISO/IEC TR 15581:1998(E)

While the procedure iactive, an allocatabldummyargumentarray thatdoes not havéNTENT(IN)
may be allocated, deallocated, definedbecome undefined. Oneay of these events have occurred
no reference to the associated actual argument via another alias is permitted .

On exit from the routine thactual argument hagshe allocationstatus ofthe allocatabledummy
argument (there is no change, of course, if the allocataiieny argument has INTENT(IN)). The
usual rules apply for propagation of the value from the dummy argument to the actual argument.

No automatic deallocation of the allocatabiemmy argument occurs as a result efecution of a
RETURN or END statement in the procedure of which it is a dummy argument.

Notethat an INTENT(IN) allocatabldummyargumentarray cannot havéts allocationstatusaltered
within the called procedureThusthe main difference betweenich adummyargument and a normal
dummy array is that it might be unallocated on entry (and throughout execution of the procedure).

Example

SUBROUTINE LOAD(ARRAY, FILE)
REAL, ALLOCATABLE, INTENT(OUT) :: ARRAY(:, :, 3)
CHARACTER(LEN=*), INTENT(IN) :: FILE
INTEGER UNIT, N1, N2,-N3
INTEGER, EXTERNAL : GET' LUN
UNIT = GET_LUN() I Returns an unused unit number
OPEN(UNIT, FILE=FILE, FORM="UNFORMATTED)
READ(UNIT) N1, N2, N3
IF (ALLOCATED(ARRAY)) DEALLOCATE(ARRAY)
ALLOCATE(ARRAY(N1, N2, N3))
READ(UNIT) ARRAY
CLOSE(UNIT)

END SUBROUTINE LOAD

2.3 Allocatable Array Function Results
An allocatable array function shall have an explicit interface.

On entry to an allocatablarray function, the allocatiorstatus ofthe result variabledbecomes not
currently allocated.

The function result variable may be allocated and deallocated any nuntiseetluring the execution
of the function; however, it shall be currently allocated and hadefiaed value on exit from the
function. Automatic deallocation of the result variallflses notoccurimmediately onexit from the
function, but after execution of the statement in which the function reference bccurs.

! This storage can thus be reclaimed at the same time as that of array temporaries and theengslidit of
shape-spetunctions referenced in the expression.

ISO/IEC TR 15581:1998(E) © ISO/IEC
Example

FUNCTION INQUIRE_FILES_OPEN() RESULT(OPENED_STATUS)
LOGICAL,ALLOCATABLE :: OPENED_STATUS()
INTEGER 1,J
LOGICAL TEST
DO 1=1000,0,-1

INQUIRE(UNIT=I,0PENED=TEST,ERR=100)
IF (TEST) EXIT

100 CONTINUE
END DO
ALLOCATE(OPENED_STATUS(O:1))

DO J=0,|
INQUIRE(UNIT=J,0PENED=OPENED_STATUS(J))
END DO
END FUNCTION INQUIRE_FILES_OPEN

2.4 Allocatable Array Components

Allocatablearray componentare defined to baultimate componentsjust as pointecomponentsare,

because the value (if any) is stored separately fromesteofthe structure and this storagimes not
exist (because tharray is unallocated)when thestructure is created. Awith ultimate pointer
components, variables containing ultimate allocatablay componentsre forbidden from appearing
directly in input/output lists - the user shallNist any allocatable array or-pointer component for i/o.

As per allocatablearrays currently, they'are forbidden! from' storage association contexts (so any
variable containing an ultimate allocatabégray component cannoappear in COMMON or
EQUIVALENCE); this maintains the clarity-@nd optimizability of allocatableays. However,
allocatablearray componentsare permitted in - SEQUENCE’ typewhich-allows the same type to be
defined separately in more than one’scoping 'Unit.

Deallocation of a variable containing an ultimate allocatabigycomponent automatically deallocates
all such components of the variable that are currently allocated.

In a structure constructor for a derived type containing an allocatable array component, the expression

corresponding to the allocatable array component must be one of the following:
» an argumentless reference to the intrinsic fundtioi.L(); the allocatable array component
receives the allocation status of not currently allocated.

e avariable that is itself an allocatable array; the allocatable array component receives the allocation

status of the variable, and, if allocated, the shape and value of the variable.
» any other array expression; the allocatable array component receives the allocation status of
currently allocated with the same shape and value as the expression.

© ISO/IEC ISO/IEC TR 15581:1998(E)

For intrinsic assignment of objects of a derived type containing an allocatable array component, the
allocatable array component of the variable on the left-hand-side receives the allocation status and, if
allocated, the shape and value of the corresponding component of the expression. This occurs as if the
following sequence of steps is carried dut:
1. If the component of the variable is currently allocated, it is deallocated.
2. If the corresponding component of the expression is currently allocated, the component of the
variableis allocated with the same shape. The value of the component of the expression is then
assigned to the corresponding component of the variable using intrinsic assignment.

Note that this definition of assignment facilitates certain optimizations when the allocatable array component

of the expression is allocated. In particular:

1. If the corresponding component of the variable is allocated with the same (or larger) size, its storage can
be re-used without the overhead of an additional allocation or deallocation;

2. If the expression is a function reference, the processor can simply copy the descriptor instead of the
allocatable array contents and omit the deallocation of this component.

¢ This ensures that any pointers that point to the previous contents of the allocatable array component of the
variable become undefined. Implementations are thus free to skip the allocation-deallocation (or not) when the
component of the variable happens to be allocated with the same shape as the corresponding component of the
expression, whichever is most efficient.

	�ôf~ÿpâ#bE\vÀÕ*‘ı¯�Áwq¼�¦Åÿ~“î?›í»__#\—äêÏ_IõŸWÂ˛‘bÿ_¿&zÖ»Û	¼ûuË¬-�n••ù_¾Ã.lÌ�ÊÄ^§*Zˇ&˝OõxÄÝ

