INTERNATIONAL STANDARD

Second edition 2000-05-01

Injection equipment for medical use —

Part 1: **Ampoules for injectables**

Matériel d'injection à usage médical —

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 9187-1:2000 https://standards.iteh.ai/catalog/standards/sist/faf2a16f-5e93-48b6-b170-41969b0e0d34/iso-9187-1-2000

Reference number ISO 9187-1:2000(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 9187-1:2000</u> https://standards.iteh.ai/catalog/standards/sist/faf2a16f-5e93-48b6-b170-41969b0e0d34/iso-9187-1-2000

© ISO 2000

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 734 10 79 E-mail copyright@iso.ch Web www.iso.ch Printed in Switzerland

Contents

Forewordiv		
Introduction		/
1	Scope	1
2	Normative references	1
3	Dimensions and designation	2
	Material	
5	Requirements	2
	Test for breaking force	
7	Delivery	7
8	Packaging	7
9	Marking	7

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 9187-1:2000</u> https://standards.iteh.ai/catalog/standards/sist/faf2a16f-5e93-48b6-b170-41969b0e0d34/iso-9187-1-2000

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO 9187 may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

International Standard ISO 9187-1 was prepared by Technical Committee ISO/TC 76, *Transfusion, infusion and injection equipment for medical and pharmaceutical use.*

This second edition cancels and replaces the first edition (ISO 9187-1:1991), which has been technically revised.

ISO 9187 consists of the following parts, under the general title Injection equipment for medical use:

— Part 1: Ampoules for injectables

<u>ISO 9187-1:2000</u>

— Part 2: One-point-cut (OPC) ampoules 41969b0e0d34/iso-9187-1-2000

Introduction

Ampoules are suitable packaging materials for storing pharmaceutical products until they are administered to the patient. Owing to the direct contact between injectables and the primary container over extended storage periods, possible interactions must be avoided in order to guarantee patient safety. Adequate means to achieve this objective include proper selection of primary packaging materials, the choice of suitable package design and the availability of specific requirements and methods for testing individual container systems.

Four standardized forms of ampoule (forms A, B, C and D) have, in the past, been in widespread use. However, form A is no longer used in the pharmaceutical industry and, consequently, has not been included in this part of ISO 9187. To avoid any confusion among manufacturers and users, it was decided to retain the same designation letters (i.e. B, C and D) for the forms of ampoules in current use and to disregard the letter A.

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 9187-1:2000</u> https://standards.iteh.ai/catalog/standards/sist/faf2a16f-5e93-48b6-b170-41969b0e0d34/iso-9187-1-2000

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 9187-1:2000</u> https://standards.iteh.ai/catalog/standards/sist/faf2a16f-5e93-48b6-b170-41969b0e0d34/iso-9187-1-2000

Injection equipment for medical use —

Part 1: **Ampoules for injectables**

1 Scope

This part of ISO 9187 specifies materials, dimensions, capacities, performance and packaging requirements for three forms of glass ampoule (forms B, C and D) for injectable pharmaceutical products.

It applies to ampoules with or without a colour break-ring.

If ampoules with a colour break-ring are requested by the user, this should be agreed between manufacturer and user, including a decision on break-ring colour.

Ampoules complying with this part of ISO 9187 are intended for single use only.

(standards.iteh.ai)

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO 9187. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO 9187 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards.

ISO 720:1985, Glass — Hydrolytic resistance of glass grains at 121 °C — Method of test and classification.

ISO 1101:—¹⁾, Geometrical product specifications (GPS) — Geometrical tolerancing — Tolerances of form, orientation, location and run-out.

ISO 2859-1:1999, Sampling procedures for inspection by attribute — Part 1: Sampling schemes indexed by acceptance quality limit (AQL) for lot-by-lot inspection.

ISO 4802-1:1988, *Glassware* — *Hydrolytic resistance of the interior surfaces of glass containers* — *Part 1: Determination by titration method and classification.*

ISO 4802-2:1988, Glassware — Hydrolytic resistance of the interior surfaces of glass containers — Part 2: Determination by flame spectrometry and classification.

ISO 7500-1:1999, Metallic materials — Verification of static uniaxial testing machine — Part 1: Tension/compression testing machine — Verification and calibration of the force-measuring system.

¹⁾ To be published. (Revision of ISO 1101:1983)

3 Dimensions and designation

3.1 Dimensions

The dimensions of ampoules shall be as shown in Figures 1, 2 and 3 (forms B, C and D respectively) and as given in Table 1.

3.2 Designation

Designation of ampoules shall consist of the descriptor word "ampoule", followed by a reference to this part of ISO 9187, followed by the ampoule form, the nominal volume, the colour of the glass and, if applicable, mention of a colour break-ring.

EXAMPLE 1 Designation of a form B ampoule without a colour break-ring with a nominal volume of 10 ml, made of colourless glass (cl) complying with the requirements of this part of ISO 9187:

EXAMPLE 2 Designation of a form B ampoule with a colour break-ring (cbr) with a nominal volume of 10 ml, made of colourless glass (cl) complying with the requirements of this part of ISO 9187:

Ampoule ISO 9187-1 – B – 10 – cl – cbr

4 Material

Colourless (cl) or amber (br) glass of hydrolytic resistance grain class ISO 720 - HGA 1 shall be used.

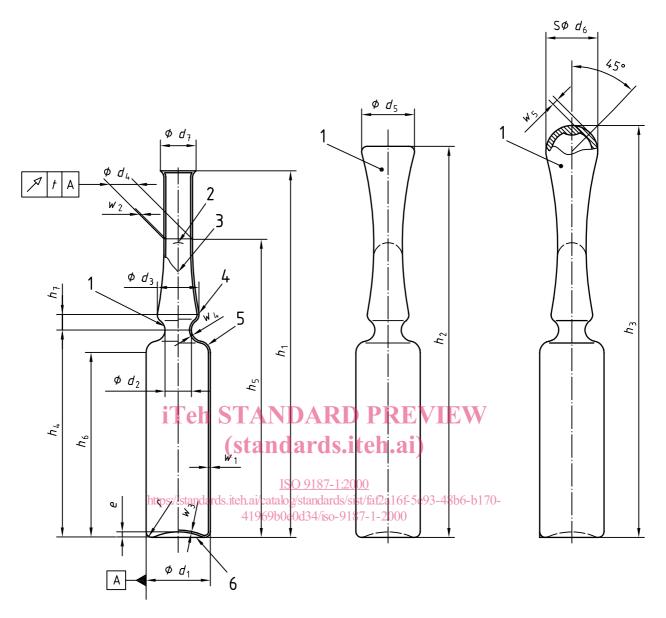
A change in the chemical composition of the glass material should be notified by the tube manufacturer to the user at least nine months in advance.

<u>ISO 9187-1:2000</u> https://standards.iteh.ai/catalog/standards/sist/faf2a16f-5e93-48b6-b170-41969b0e0d34/iso-9187-1-2000

5 Requirements

5.1 Hydrolytic resistance

When tested in accordance with ISO 4802-1 and ISO 4802-2, the hydrolytic resistance of the internal surface of ampoules shall comply with the requirements specified for hydrolytic resistance container class ISO 4802 - HC 1.


5.2 Annealing quality

Ampoules shall be annealed; the maximum residual stress of uncoloured ampoules after annealing shall not produce an optical retardation exceeding 50 nm per millimetre of glass thickness.

5.3 Breaking force

It is presumed that the ampoules to be tested are provided with a predetermined breaking point, such as a ceramic ring, at the constriction.

When tested in accordance with clause 6, the breaking force shall be as specified in Table 2.

NOTE For other dimensions, see Figure 1.

NOTE For other dimensions, see Figure 1.

Key

- 1 Constriction
- 2 Sealing point
- 3 Stem
- 4 Bulb
- 5 Shoulder
- 6 Base or bottom

Figure 1 — Form B: stem, cut ampoule with constriction

Key 1 Funnel **Key** 1 Dome

Figure 2 — Form C: stem, open-funnel ampoule with constriction Figure 3 — Form D: stem, sealed ampoule with constriction