TECHNICAL ISO/IEC
REPORT TR 10176

Second edition
1998-09-01

Information technology — Guidelines for
the preparation of programming language
standards

Technologies de l'information — Lignes directrices pour la préparation des
normes des langages de programmation

Reference numbe
ISO/IEC TR 10176:1998(E)

ISO/IEC TR 10176:1998(E)

Contents

S Yo 1= 1
P2 S =T (=T Lo =TT PP RSP 1
T T 101 1T OO RPPR 1
N TN o =1] o PRSP 6
4.1 Guidelines for the form and content of StaNAArdSccoceiiiiiiiii e e 6
4.1.1 Guideline: The general frAMEWOIK............c.uiiiiiiiiiiiiie e ses baeeeasnbeeessnnbeeeeanees 6
4.1.2 Guideline: Definitions of syntax and SEMEANTICS.........coiiiiiiiiiiiiee e eeeerbeeeeannees 7
4.1.3 Guidelines 0N the USe Of CharaCter SEIS........coiiiiiiiiiiii e rere s eeeanbeeeeaaabeeeeeens 8
4.1.4 Guideline: Error detection reqUITEMENTS........coiiiiiii ettt e et e e e e sbeees easbeeeessnseeeesanes 14
4.1.5 Guideline: Exception detection reqUIrEMENTSccoiiiiiiiiiiiee ittt e e eeeesnieeeesanes 16
4.1.6 Guideline: Static detection of exCeptions & . . L i L s 19
4.1.7 Guideline: Recovery from non-fatal errors and exceptions ... e 19
4.1.8 Guideline: Requirements on user documentation(.. 2. [0L20.L0%5. ... e e, 19
4.1.9 Guideline: Provision of processor options e/l 6ad /s iec- e 017620098 s e 20
4.1.10 Guideline: Processor-defined lIMItSccuuiiiiiiiiiiiiee e ree eeeanibeeesabeeeeaanes 21
4.2 GUIdENINES ON PrESENTALIONc.tiiii ittt ettt e e et e e e sttt e e asbbe e e e anbbee eeabeeeesabeeeeaanbeeeeannes 23
4.2.1 GUIdElINE: TEIMINOIOGYceiiiiiiiieiiiee ettt e st e et e e e st e e as teesaibeeeeaabeeesaanbeeeeannes 23
4.2.2 Guideline: Presentation Of SOUICE PrOgIamMS.ccoiiiiiiiiiiiiie ittt rteee et e e e e e e s siee beeeesaseeeeeanes 23
4.3 Guidelines 0N ProCeSSOr AEPENUENCE..........oii ettt et e et e e st e e s st e e e s aee easbbeeesanbeeeesanes 23
4.3.1 Guideline: Completeness of defiNitioN ... aerreee e 23
4.3.2 Guideline: Optional language fEAIUMES.........ooi it eernbeeeesanbeeeeaaaes 24
4.3.3 Guideline: Management of optional language fEatUreS..........cooviii i ees eeeeas 24
4.3.4 Guideline: Syntax and semantics of optional language features...........cccovvveeiiiiiieei e .24

© ISO/IEC 1998

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying and micro-
film, without permission in writing from the publisher.

ISO/IEC Copyright Office « Case postale 56 « CH-1211 Genéve 20 « Switzerland
Printed in Switzerland

© ISO/IEC ISO/IEC TR 10176:1998(E)

4.3.5 Guideline: Predefined keywords and identifiersccccccc v eevvveeee 25
4.3.6 Guideline: Definition of optional fEAtUIESvviiiiiiec e eereee e a————— 25
4.3.7 Guideline: Processor dependence in nuMerical ProCESSING . .uvvvveeiiiciuiierieeeisiiiiirer e e e s s s sireeeeeeeesenenes w25
4.4 Guidelines on conformity rEQUIFEMENEScieeiiiiiiiiiieee e e ieste e e e e s s e e e e e s s s e e e e e e s s s snnrene eeeeeesssssseneeees 26
N TN To [=] [T oY o] TS (= L (=)Y/ 26
4.5.1 Guideline: Secondary StANAAIAS.ooiiiiiiiii e aeerreee e 26
4.5.2 Guideline: Incremental SEANUAITS..........eeiiiiiiiie e rbrre e ans aeeabeeeeanbeeeeanaeas 26
4.5.3 Guideline: Consistency of USe Of QUIAEIINES..........eoiiiiiiiiii e eeeeriaee e 26
4.5.4 Guideline: Revision COMPAtIDIlILYcooueiiiiiiii e eeeeraee e e 27
4.6 Guidelines 0N CroSS-1aNQUAGE ISSUEBSueiiiiiiiieiiiiiee ettt ettt et e e st e e s st e e sane abeeeessnbeeessnnnes 29
4.6.1 Guideline: Binding to functional StaNdardS..............ocuuiiiiiiiiiii i e 29
4.6.2 Guideline: Facilitation of DINAING...........coooiiiii e e 29
4.6.3 Guideline: Conformity with multi-level functional standardsccccovviiiiiiiii s e, 29
4.6.4 Guideline: Mixed language programming ... 1.5 At bbb it e e s e 30
4.6.5 Guideline: Common elements......L. 5 L L L L S L L s 30
4.6.6 Guideline: Use Of data ICHONGIIEScoeysrrsruesrrseeor1ovsees fymoneeesssseessnsseeesansseessansseeesamieees tessmiseessssseeessnnees 30
4.7 Guidelines on INternatioNaliZAtIONou i vueerseemenseeennreressansrsgasenesrragsees o e 30
4.7.1 Guideline: Cultural convention set switching MechaniSM ... s e 30
4.7.2 Guideline: Cultural convention related fUNCHONAIILYoccoueiiiiiiiiie e e e 30
Annex A Recommended extended repertoire for user-defined identifier...........cccooeiiii e 3 2

ISO/IEC TR 10176:1998(E) © ISO/IEC

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in
liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

The main task of technical committees is to prepare International Standards, but in exceptional circumstances a
technical committee may propose the publication of a Technical Report of one of the following types may be
proposed:

O type 1, when the necessary support cannot be obtained for the publication of an International Standard, despite
repeated efforts;

O type 2, when the subject is still under technical development, or where for any other reason there is the future
but not immediate possibility of an agreement on an International Standard;

O type 3, when a technical committee hasycollected datarof @ydifferent kind fromythat which is normally published
as an International Standard (“state of the‘art”, for'example).

Technical Reports of types 1 and 2 are subject to review within three"years of publication, to decide whether they
can be transformed into International Standards. Technical Reports of type 3 do not necessarily have to be
reviewed until the data they provide are considered-to-be'no‘longervalid or useful.

ISO/IEC TR 10176, which is a Technical Report/ of-typec3r-was prepared by ISO/IEC Joint Technical Committee
JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments and system
software interfaces.

This second edition cancels and replaces the first edition (ISO/IEC TR 10176:1991), which has been technically
revised.

© ISO/IEC ISO/IEC TR 10176:1998(E)

Introduction

Background: Over the last three decades (1966-1998), standards have been produced for a number of computer
programming languages. Each has dealt with its own language in isolation, although to some extent the drafting
committees have become more expert by learning from both the successes and the mistakes of their predecessors.

The first edition of this Technical Report was produced during the 1980s to put together some of the experience that
had been gained to that time, in a set of guidelines, designed to ease the task of drafting committees of
programming language standards. This second edition enhances the guidelines to take into account subsequent
experiences and developments in the areas of internationalization and character sets.

This document is published as a Technical Report type 3 because the design of programming languages - and
hence requirements relating to their standardization - is still evolving fairly rapidly, and because existing languages,
both standardized and unstandardized, vary so greatly in their properties and styles that publication as a full
standard, even as a standard set of guidelines, did not seem appropriate at this time.

The need for guidelines: While each language, taken as a whole, is unique, there are many individual features
that are common to many, or even to most of them. While standardization should not inhibit such diversity as is
essential, both in the languages and in the form of their standards, unnecessary diversity is better avoided.
Unnecessary diversity leads to unnecessary confusion, unnecessary retraining, unnecessary conversion or
redevelopment, and unnecessary costs. The aim of the guidelines is therefore to help to achieve standardization
across languages and across their standards:

The existence of a guideline will often saveladrafting committee fram:much discussion of detailed points all of which
have been discussed previously for other languages.

Furthermore the avoidance of needless diversity between languages makes. it _easier for programmers to switch
between one and another.

NOTE Diversity is a major problem because it uses up time and resources better devoted to the essential
part, both by makers and users of standards. Building a language standard is very expensive in resources and far
too much time and effort goes into “reinventing the wheel” and trying to solve again, from the beginning, the same
problems that other committees have faced.

However, a software writer faced with the task of building (say) a support environment (operating system facilities,
utilities, etc.) for a number of different language processors is also faced with many problems from the eventual
standards. Quite apart from the essential differences between the languages, there are to begin with the variations
of layout, arrangement, terminology, metalanguages, etc. Much worse, there are the variations between
requirements of basically the same kind, some substantial, some slight, some subtle - compounded by needless
variations in the way they are specified. This represents an immense extra burden - as does the duplication in
providing different support tools for different languages performing basically the same task.

How to use this Technical Report: This Technical Report does not seek to legislate on how programming
languages should be designed or standardized: it would be futile even to attempt that. The guidelines are, as their
name implies, intended for guidance only. Nevertheless, drafting committees are strongly urged to examine them
seriously, to consider each one with care, and to adopt its recommendation where practicable. The guidelines have
been so written that it will be possible in most cases to determine, by examination, whether a given programming
language standard has been produced in accordance with a given guideline, or otherwise. However, the
conclusions to be drawn from such an assessment, and consequent action to be taken, are matters for individual
users of this Technical Report and are beyond its scope.

Reasons for not adopting any particular guideline should be documented and made available, (e.g. in an informative
annex of the programming language standard). This and the reason therefore can be taken into account at future
revisions of the programming language standard or this technical report.

ISO/IEC TR 10176:1998(E) © ISO/IEC

Of course, care must naturally be taken when following these guidelines to do so in a way which does not conflict
with the ISO/IEC Directives, or other rules of the standards body under whose direction the standard is being
prepared.

Further related guidelines: This Technical Report is concerned with the generality of programming languages and
general issues concerning questions of standardization of programming languages, and is not claimed to be
necessarily universally applicable to all languages in all circumstances. Particular languages or kinds of languages,
or particular areas of concern, may need more detailed and more specific guidelines than would be appropriate for
this Technical Report. At the time of publication, some specific areas are already the subject of more detailed
guidelines, to be found in existing or forthcoming Technical Reports. Such Technical Reports may extend, interpret,
or adapt the guidelines in this Technical Report to cover specific issues and areas of application. Users of this
Technical Report are recommended to take such other guidelines into account, as well as those in this Technical
Report, where the circumstances are appropriate. See, in particular, ISO TR 9547 and ISO/IEC TR 10034.

Vi

TECHNICAL REPORT ©ISO/IEC ISO/IEC TR 10176:1998(E)

Information technology — Guidelines for the preparation of
programming language standards

1 Scope

This Technical Report presents a set of guidelines for producing a standard for a programming language.

2 References

ISO/IEC 646:1991, Information technology — ISO 7-bit coded character set for information interchange.
ISO/IEC 2022:1994, Information technology — Character code structure and extension techniques.
ISO 2382-15:1985, Data processing — Vocabulary — Part 15: Programming languages.

ISO/IEC 4873:1991, Information technology — ISO 8-bit code for information interchange — Structure and rules for
implementation.

ISO/IEC 6937:1994, Information technology — Coded, graphic, character set for text communication — Latin
alphabet.

ISO/IEC 8859-1:1998, Information technology-+8-bit.single-byte coded graphic character sets — Part 1: Latin
alphabet No. 1. -

ISO TR 9547:1988, Programming language processors — Test methods — Guidelines for their development and
acceptability.

ISO/IEC TR 10034:1990, Guidelines for the preparation of conformity clauses in programming language standards.

ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character Set (UCS) — Part 1:
Architecture and Basic Multilingual Plane.

ISO/IEC TR 11017:1998, Information technology — Framework for internationalization.

ISO/IEC 11404:1996, Information technology — Programming languages, their environments and system software
interfaces — Language-independent datatypes.

ISO/IEC 14977:1996, Information technology — Syntactic metalanguage — Extended BNF.

3 Definitions

This clause contains terminology which is used in particular specialized senses in this Technical Report. It is not
claimed that all language standards necessarily use the terminology in the senses defined here; where appropriate,
the necessary interpretations and conversions would need to be carried out when applying these guidelines in a
particular case. Also, not all language standards use the terminology of ISO 2382-15; the terminology defined here,
itself divergent in some cases from that in ISO 2382-15, has been introduced to minimize confusion which might
result from such difference. Some remarks are made below about particular divergences from I1ISO 2382-15, for
further clarification.

ISO/IEC TR 10176:1998(E) © ISO/IEC

3.1 programming language processor (abbreviated where there is no ambiguity to processor) :
Denotes the entire computing system which enables the programming language user to translate and execute
programs written in the language, in general consisting both of hardware and of the relevant associated software.

NOTES

1 A “processor” in the sense of this Technical Report therefore consists of more than simply (say) a “compiler” or
an “implementation” in conventional terminology; in general it consists of a package of facilities, of which a
“compiler” in the conventional sense may be only one. There is also no implication that the processor consists of a
monolithic entity, however constituted. For example, processor software may consist of a syntax checker, a code
generator, a link-loader, and a run-time support package, each of which exists as a logically distinct entity. The
“processor” in this case would be the assemblage of all of these and the associated hardware. Conformity to the
standard would apply to the assemblage as a whole, not to individual parts of it.

2 In ISO TR 9547 the term “processor” is used in a more restricted sense. For the purposes of ISO TR 9547, a
differentiation is necessary between “processor” and “configuration”; that distinction is not necessary in this
Technical Report. Those using both Technical Reports will need to bear this difference in terminology in mind. See
3.3.4 for another instance of a difference in terminology, where a distinction which is not necessary in ISO TR 9547
has to be made in this Technical Report.

3.2 syntax and semantics:

Denote the grammatical rules of the language. The term syntax refers to the rules that determine whether a
program text is well-formed. The syntactic rules need not be exclusively “context-free”, but must allow a processor
to decide, solely by inspection of a program text, with a practicable amount of effort and within a practicable amount
of time, whether that text conforms to the rules. An error (see 3.3.1) is a violation of the syntactic rules.

The term semantics refers to therules which determine the behaviourof processors when executing well-formed
programs. An exception (see 3.3.2)"isa violation of a-non-syntactic requirement-on'programs.

NOTE In ISO 2382-15 the term ‘static™"is ‘defined “(15.02.09) as “pertaining to properties that can be
established before the execution of a program” and dynamic (15.02.10) as “pertaining to properties that can only be
established during the execution of a program?. These, therefore appear to be close to the terms “syntax” and
“semantics” respectively as defined in this Technical Report, 1SO.2382-15 does not define “syntax” or “semantics”,
though these are terms very commonly used in-the programming language community.

Furthermore, the uses of “static” and “dynamic” (and other terms) in ISO 2382-15 seem designed for use within a
single language rather than across all languages, but while that terminology can mostly be applied consistently
within a single language, it becomes much harder to do so across the generality of languages, which is the need in
this Technical Report. This problem is not totally absent with “syntax/semantics” but is much less acute.

3.3 Errors, Exceptions, Conditions
3.3.1 errors:

The incorrect program constructs which are statically determinable solely from inspection of the program text,
without execution, and from knowledge of the language syntax. A fatal error is one from which recovery is not
possible, i.e. it is not possible to proceed to (or continue with) program execution. A non-fatal error is one from
which such recovery is possible.

NOTE A fatal error may not necessarily preclude the processor from continuing to process the program, in
ways which do not involve program execution (for example, further static analysis of the program text).

3.3.2 exceptions:

The instances of incorrect program functioning which in general are determinable only dynamically, through
execution of the program. A fatal exception is one from which recovery is not possible, i.e. it is not possible to
continue with (or to proceed to) program execution. A non-fatal exception is one from which recovery is possible.

NOTES

1 In case of doubt, “possible” within this section should be interpreted as “possible without violating definitions
within or requirements of the standard”. For example, the hardware element of a language processor may have the
technical capability of continuing program execution after division by zero, but in terms of a language standard
which defines division by zero as a fatal exception, the consequences of such continued execution would not be
meaningful.

2 Seealso 3.3.4

© ISO/IEC ISO/IEC TR 10176:1998(E)

3.3. conditions:

Occurrences during execution of the program which cause an interruption of normal processing when detected. A
condition may be an exception, or may be some language-defined or user-defined occurrence, depending on the
language.

NOTE For example, reaching end-of-file on input may always be an exception in one language, may always
be a condition in another, while in a third it may be a condition if action to be taken on detection is specified in the
program, but an exception if its occurrence is not anticipated.

3.3.4 Relationship to other terminology

In ISO TR 9547 the term “error” is used in a more general sense to encompass what this Technical Report terms
“exceptions” as well as “errors”. For the purposes of ISO TR 9547, the differentiation made here is not necessary.
Those using both Technical Reports will need to bear this difference in terminology in mind. See note 2 of 3.1 for
another instance of a difference in terminology, where a distinction has to be made in ISO TR 9547 which is not
necessary in this Technical Report.

ISO 2382-15 does not define “error” but does define “exception (in a programming language)” (15.06.12). The
definition reads “A special situation which may arise during execution, which is considered abnormal, which may
cause a deviation from the normal execution sequence, and for which facilities exist in the programming language to
define, raise, recognize, ignore and handle it”. ON-conditions in PL/I and exceptions in Ada are cited as examples.

The reason for not using this terminology in this Technical Report, which deals with the generality of existing and
potential standardized languages rather than just a single one, is that it makes it difficult to distinguish (as this
Technical Report needs to do) between “pure” exceptions, more general conditions, and processor options for
exception handling which are.built into the language, (all in.the senses.defined.in this Technical Report). It also does
not aid making sufficient distinction between 'ON-conditions being-enabled or"disabled (globally or locally), nor
whether the condition handler is the system-default or provided. by the pregrammer.

3.4 processor dependence
For the purposes of this Technical Report, thelfollowing definitions are assumed.

If this Technical Report refers to a feature'cbeing /left 'undefined- 'ivta standard (though referred to within the
standard), this means that no requirement is specified concerning its provision and the effect of attempting to use
the feature cannot be predicted.

If this Technical Report refers to a feature being processor-dependent , this means that the standard requires the
processor to supply the feature but that there are no further requirements upon how it is provided.

If this Technical Report refers to a feature being processor-defined , this means that its definition is left processor-
dependent by the standard, but that the definition shall be explicitly specified and made available to the user in
some appropriate form (such as part of the documentation accompanying the processor, or through use of an
environmental enquiry function).

NOTES

1 The term “feature” is used here to encompass both language features (syntactic elements a change to which
would change the text of a program) and processor features (e.g. processor options, or accompanying
documentation, a change to which would not change the text of a program). Examples of features which are
commonly left undefined, processor-dependent or processor-defined are the collating sequence of the supported
character set (a language feature) and processor action on detection of an exception (a processor feature).

2 In any particular instance the precise effect of the use of any of these terms may be affected by the nature of the
feature concerned and the context in which the term is used.

3 None of the above terms specifically covers the case where reference to a feature is omitted altogether from the
standard. While in general this might be regarded as “implicit undefined”, it is possible that an unmentioned feature
might necessarily have to be supplied for the processor to be usable (and would hence be processor-dependent)
and that some aspects of the feature might in turn have to be processor-defined for the feature to be usable.

ISO/IEC TR 10176:1998(E) © ISO/IEC

3.5 Secondary, Incremental and supplementary standards

3.5.1 Secondary standards

In this Technical Report, a secondary standard is one which requires strict conformity with another (“primary”)
standard - or possibly more than one primary standard - but places further requirements on conforming products
(e.g. in the context of this Technical Report, on language processors or programs).

NOTE A possible secondary standard for conforming programs might specify additional requirements with
respect to use of comments and indentation, provision of documentation, use of conventions for naming user-
defined identifiers, etc.

A possible secondary standard for conforming processors might specify additional requirements with respect to
error and exception handling, range and accuracy of arithmetic, complexity of programs which can be processed,
etc.

3.5.2 Incremental standards

In this Technical Report, an incremental standard adds to an existing standard without modifying its content. Its
purpose is to supplement the coverage of the existing standard within its scope (e.g. language definition) rather than
(as with a secondary standard, see 3.5.1) to add further requirements upon products conforming with an existing
standard which are outside that scope. It is recognized that in some cases it might be desirable to produce a
standard additional to an existing one which was both “incremental” (in terms of language functionality) and
“secondary” (in terms of other requirements upon products).

3.5.3 Supplementary standards

In this Technical Report, a supplementary standard adds functionality to an existing standard without extending its
range of syntactic constructs; such as by the binding of a language to a specific set of functions. Supplementary
standards are expected to be expressed in terms.of the base language which they supplement, but do not replace
any elements of the primary standard:

3.6 Terms related to character and internationalization
3.6.1 octet:

An ordered sequence of eight bits considered as a unit.

3.6.2 byte:
An individually addressable unit of data storage used to store a character, portion of a character or other data.

3.6.3 character:
A member of a set of elements used for the organization, control, or representation of data.

NOTE The definition above is that from the standard developed by ISO/IEC JTC 1/SC2. This ensures that
the term “character” used in this TR is consistent with the coded character set standard. The composite sequence of
ISO/IEC 10646 is not considered as a character. Each element of a composite sequence (as it is in ISO/IEC 10646)
is considered as a “character” in this TR.

3.6.4 combining character:

A member of an identified subset of the coded character set of ISO/IEC 10646 intended for combination with the
preceding non-combining graphic character, or with a sequence of combining characters preceded by a non-
combining character.

3.6.5 composite sequence:
A sequence of graphic characters consisting of a non-combining character followed by one or more combining
characters.

NOTES

1 A graphic symbol for a composite sequence generally consists of the combination of the graphic symbols of each
character in the sequence.

2 A composite sequence is not a character and therefore is not a member of the repertoire of ISO/IEC 10646.

© ISO/IEC ISO/IEC TR 10176:1998(E)

3.6.7 coded character:
A character together with its coded representation.

3.6.8 basic character set:
A character set that is common across every execution environment of a programming language, e.g. the invariant
set of ISO/IEC 646.

3.6.9 extended character set:
A character set that is used in an execution environment, e.g. ISO/IEC 10646-1. In most cases, the repertoire of the
extended character set is larger than the basic character set.

3.6.10 character datatype:
Character datatype is a family of datatypes whose value spaces are character sets.

NOTE The value space of the character datatype should be wide enough to represent every member of
extended character set, if the repertoire list of characters to be stored in the character datatype is not specified
explicitly.

3.6.11 octet datatype:
Octet datatype is the datatype of 8-bit codes, as used for character sets and private encodings.

NOTE The value space of the octet datatype is wide enough to represent every member of basic character
set, but may not be wide enough to every member of extended character sets.

3.6.12 octet string datatype:
Octet string datatype is the datatype of variable-length encoding using 8-bit codes.

NOTE The octet string datatype may be used to representa member of extended character sets.

3.6.13 multi-byte representation of character:
A coded character represented by using a sequence of bytes (one-octet byte, two-octet byte, or four-octet byte).

NOTES

1 A character that is encoded by UTF-8 (UCS Transformation format) specified by ISO/IEC 10646-1/Amd.2 and
stored in an octet-string datatype is an example of the multi-byte representation of a character. The size of a coded
character encoded by UTF-8 is up to six octets, therefore it may occupy up to 6 one-octet bytes in the octet string
datatype.

2 To handle the multi-byte representation of character correctly in an octet string datatype, the character boundary
needs to be distinguished from the octet(s) boundary. Otherwise a multi-byte representation of character may be
bisected as the result of octet base string manipulation, thus becoming no longer a character. In following reference
the multi-byte representation of a character will be abbreviated as multi-byte character.

3.6.14 multi-octet representation of character:
A coded character stored in a character datatype that size is equal to or larger than two octets with whose values
are multiple octets.

NOTES

1 A character that is encoded by UCS-2 stored in a character datatype is an example of the multi-octet
representation of character. The size of a coded character encoded by UCS-2 is always two octets, therefore it can
be considered as a coded character that is represented by single two-octet byte.

2 In following reference the multi-octet representation of a character will be abbreviated as the multi-octet
character.

3 A coded character represented by UTF-16, which is specified by ISO/IEC 10646-1/Amd.1, is
categorized in both multi-byte and multi-octet character, because the byte size of UTF-16 is two-octet, but
a character may occupy 1 or 2 two-octet bytes in a octet string datatype.

ISO/IEC TR 10176:1998(E) © ISO/IEC

3.6.15 collation:
The logical ordering of strings according to defined precedence rules.

3.6.16 cultural convention:
A convention of an information system which is functionally equivalent between cultures, but may differ in
presentation, operation behaviour or degree of importance.

NOTE Time zone, Summer time, Date and time format, Numeric format, Monetary format, Collation
sequence, and Character classification, are examples of cultural convention.

3.6.17 cultural convention set:
A set of cultural conventions to be referred to by each programming language standard.

3.6.18 execution environment
An environment where a program is executed.

NOTES

1 An execution environment of program is not always the same as the compilation environment of the program.

2 Coded character sets supported by execution environment and input from the environment to program may vary
from one to another. For example, ISO/IEC 8859-1 may be supported by an environment, and ISO/IEC 10646-1

may be supported by another environment.

3.7 Aucxiliary verbs used in this TR
3.7.1 shall:

An indication of a requirement on programming language standardjorjprocessors.

3.7.2 should:
An indication of a recommendation to programming language standard or processors.

3.7.3 may:

An indication of an optional feature'ofiprogrammingdanguage‘standard or processors. 'When this Technical Report
provides a recommendation to the programming’ language“standard’ that“supports a specific optional feature, the
auxiliary verb “may” is used in the sentence explaining the condition.

4 Guidelines
4.1 Guidelines for the form and content of standards
4.1.1 Guideline: The general framework
The standard should be designed so that it consists of at least the following elements:
1) The specification of the syntax of the language, including rules for conformity of programs and processors.

2) The specification of the semantics of the language, including rules for conformity of programs and
processors.

3) The specification of all further requirements on standard-conforming programs, and of rules for conformity.

4) The specification of all further requirements on standard-conforming processors (such as error and
exception detection, reporting and processing; provision of processor options to the user; documentation;
validation; etc.), and of rules for conformity.

5) One or more annexes containing an informal description of the language, a description of the
metalanguage used in 1) and any formal method used in 2), a summary of the metalanguage definitions, a
glossary, guidelines for programmers (on processor-dependent features, documentation available,
desirable documentation of programs, etc.), and a cross-referenced index to the document.

© ISO/IEC ISO/IEC TR 10176:1998(E)

6) An annex containing a checklist of any implementation defined features.
7) An annex containing guidelines for implementors, including short examples.

8) An annex providing guidance to users of the standard on questions relating to the validation of conformity,
with particular reference to ISO/IEC TR 10034, and any specific requirements relating to validation
contained in 1) to 4) above.

9) Inthe case where a language standard is a revision of an earlier standard, an annex containing a detailed
and precise description of the areas of incompatibility between the old and the new standard.

10) An annex which forms a tutorial commentary containing complete example programs that illustrate the use
of the language.

NOTES

1 The objective of this guideline is to provide a framework for use by drafting committees when producing
standards documents. This framework ensures that users of the standard, whether programmers, implementors or
testers, will find in the standards document the things that they are looking for; in addition, it provides drafting
committees with a basis for organizing their work.

2 The elements referred to above are concerned only with the technical content of the standard, and are to be
regarded as logical elements of that content rather than necessarily physical elements (see note 4 below).

3 It is to be made clear that the annexes referred to in elements 5) to 10) above are informative annexes (i.e.
descriptive or explanatory only), and not normative, i.e. do not qualify or amend the specific requirements of the
standard given in elementsil), 2),-3) and«4)yit.should be explicitly stated that, inyany case of ambiguity or conflict, it
is the standard as specified in elements'1), 2),-3)'and 4) that is definitive."Note'that, if a definition (as opposed to a
description) of any formal method used in elements 1) and 2) cannot be established by reference, then the standard
may need to incorporate that definition, insofar as"is allowed by‘the rules of the responsible standards body (see
also 4.1.2).

4 Given the requirements, of note.3.above, a drafting committee has the right to interleave the various elements of
the standard it is producing if it feels that this has advantages of clarity and readability, provided that precision is not
compromised thereby, and that the distinction between the normative (specification) elements and the informative
(informal descriptive) elements is everywhere made clear.

5 Element 9) will be empty if the standard is not a revision of an earlier standard. No specific guidelines or
recommendations are included in this Technical Report concerning requirements on programs other than conformity
with the syntactic and semantic rules of the language, and if this is the case in a standard, element 3) will be empty;
however, it is recommended that in such a case an explicit statement be included that the only rules for conformity
of programs are those for conformity with the language definition. It is recommended that none of the other
elements should be left empty.

4.1.2 Guideline: Definitions of syntax and semantics

Consideration should be given to the use of a syntactic metalanguage for the formal definition of the syntax of the
language, and the current “state of the art” in formal definition of semantics should be investigated, to determine
whether the use of a formal method in the standard is feasible; the current policies on the use of formal methods
within the standards body responsible for the standard should also be taken into account.

NOTES

1 Traditionally some language standards have not used a full metalanguage (with production rules) for defining
language syntax; some have used a metalanguage for only part of the syntax, leaving the remainder for natural-
language explanation; some have used notation which is not amenable to automatic processing. The advantages of
a true syntactic metalanguage are given in the introduction to ISO/IEC 14977:1996. The main ones can be
summarized as conciseness, precision and elimination of ambiguity, and suitability for automatic processing for
purposes like producing tools such as syntax analyzers and syntax-directed editors.

2 At the time of publication of this Technical Report, formal semantic definition methods suitable for programming
languages form an active research area, making it impractical to provide any definite guidelines concerning whether

	��—Ÿ`uÔˇ��ˆ±Q!:ö�êTŸóÌ�ÀÜïÐè5�;¿Ôy¾c(T'ˆT±S¤\ª~tšºMf«7«n„xKHÁà.Û‘·ˇ)ﬁ��«V¡e�‘BÝ‚�¢�Ý“0¯Á�Ã��

