INTERNATIONAL ISO/IEC
STANDARD 13813

First edition
1998-08-01

Information technology — Programming
languages — Generic packages of real and
complex type declarations and basic
operations for Ada (including vector and
matrix types)

Technologies de l'information — Langages de programmation —
Paquetages génériques de déclarations de types réel et complexe et
opérations de base pour Ada (y compris les types vecteur et matrice)

\ zsgp, Reference number
® ISO/IEC 13813:1998(E)

ISO/IEC 13813:1998(E)

Contents Page
Foreword. v
Introduction vi
1 SCOPE . 1
2 Normative references 1
3 Types and operations: proyitded 1A RITY A T2 DD 2
4 Instantiations fedcmelarde ftol .o 2
5 Implementations 3
6 ExceptionsHips/siandardsieharcaalogs andards/gisi.eo 2200 11 4
7 Arguments outside the range of safe numbers.)
8 Method of specification of subprograms 5
9 Accuracy requirements 6
10 Overflow 7
11 Infinitles....... 8
12 Underflow 8
13 Generic Complex Types Package 8

13.1 Types ... 9

13.2 Constantsouuii 9

13.3 COMPLEX selection, conversion and composition operations 9

13.4 COMPLEX arithmetic operations 11

13.5 Mixed REAL and COMPLEX arithmetic operations 12

13.6 Mixed IMAGINARY and COMPLEX arithmetic operations . .. 12

© ISO/IEC 1998
All rights reserved. Unless otherwise specified, no part of this publication may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office ® Case postale 56 « CH-1211 Genéve 20 o Switzerland

Printed in Switzerland

© ISO/IEC ISO/IEC 13813:1998(E)

13.7 IMAGINARY sclection, conversion and composition operations 13

13.8 IMAGINARY ordinal and arithmetic operations
13.9 Mixcd REAL and IMAGINARY arithmetic operations.

14 Array Exceptions Package L

15 Generic Real Arrays Package
15.1 Types . ..o
15.2 REAL_VECTOR arithmetic operations
15.3 REAL_VECTOR scaling operations
15.4 Other REAL_VECTOR operations
15.5 REAL_MATRIX arithmetic operations
15.6 REAL_MATRIX scaling operations
15.7 Other REAL_MATRIX operations.

16 Genceric Complex Arrays Package
16.1 Types . .o

16.2 COMPLEX_VECTOR sclection, conversion and composition
OPCTAtIONS . o vttt et

16.3 COMPLEX_VECTOR arithmetic operations

16.4 Mixed REAL_VECTOR and COMPLEX_VECTOR arithmetic op-
Crations v

16.5 - COMPLEX_VECTOR scaling operations

16.6 ' /QtherCOMPLEX_VECTOR operations

16.73 COMPLEX. MATRIX sclection, conversion and composition

opcerations Lo R oL L
16.8 COMPLEX_MATRIX arithmectic operations..............
16.9)/IIMixéd | REALSMATRIX and COMPLEX_MATRIX arithmetic op-
andbidnsist/e3338b41-15d9-4341-9a94- o

16:10! I[COMPLEX_MATRIX)Scaling operations
16.11 Other COMPLEX_MATRIX operations

17 Generic Complex Input/Output Package

18 Standard non-generic packages oo

Annexes

Ada specification for GENERIC_COMPLEX_TYPES
Ada specification for ARRAY_EXCEPTIONS
Ada specification for GENERIC_REAL_ARRAYS
Ada specification for GENERIC_COMPLEX_ARRAYS

Ada specification for COMPLEX_IO

| H O Q W »

Rationale e
F.1 Abstract
F.2 Introduction
F.3 What basic operations arc included?
F.4 Sclecting an array index subtypeo o
F.5 The use of overloadings versus default values
F.6 Should constants be included? ... oo oo oo
F.7 Why define a type IMAGINARY?
F.8 The use of operator notation versus function notation . . .
F.9 Complex arithmetic oo oo oo

13
14

16
17
18
18

30
33
34
36

41

iii

ISO/IEC 13813:1998(E) © ISO/IEC

F.10 Accuracy requirements. 48
F.11 Naming and renaming conventions 49
F.12 Genericityo oot 50
F.13 Range constraints o1
F.14 Exceptional conditions, signed zeros and infinities. 51
F.15 The COMPLEX_IO package o1
F.16 Packaging of real, complex and mixed operations the
objectives and consequences L 52
F.17 Ada 95 considerations 53
G Ada 95 specifications of array packages 55
H Bibliography 61

iv

© ISO/IEC ISO/IEC 13813:1998(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the In-
ternational Electrotechnical Commission) form the specialized system for
worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical
committees established by the respective organization to deal with particular
ficlds of technical activity. ISO and IEC technical committees collaborate
in ficlds of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the
work,

InSthd fdld of mfomhation technology, ISO and IEC have established a
joint technical committee, ISO/IEC JTC 1. Draft International Standards
adopted by, the joint:teghnical committee are circulated to national bodies
for voting. Publication as an International Standard requires approval by at
least; 75 Yacof the national bedies casting a vote.

International Standard ISO/IEC 13813 was prepared by Joint Technical
Committee ISO/IEC JTC 1, Information technology, Subcommittee 22, Pro-
gramaning languages, their environments and system software interfaces.

Annexes A, B, C, D and E form an integral part of this International Stan-
dard. Annecxes F, G and H are for information only.

ISO/IEC 13813:1998(E) © ISO/IEC

Introduction

The generic packages described here are intended to provide the basic real and
complex scalar, vector, and matrix operations from which portable, reusable
applications can be built. This International Standard serves a broad class of
applications with reasonable case of use, while demanding implementations
that are of high quality, capable of validation and also practical given the
state of the art.

The specifications included in this International Standard,are-prescnted-as
compilable Ada specifications in annexes-A,'Bf €] D and E'with explanatory
text in numbered sections in the main body of text, yThe explanatony text is
normative, with the exception of notes (labeled as such).

The word “may,” as used in this International Standard, ¢onsisténtly means
“is allowed to” (or “are alldwed/toP)lalts ischsedaonly stodxpresstpérmiission;
as in the commonly occurring phrase “an impleméitatiomsmay”; ‘othier Words
(such as “can,” “could” or “might”) are used to express ability, possibility,
capacity or consequentiality.

INTERNATIONAL STANDARD © ISO/IEC ISO/IEC 13813:1998(E)

Information technology —

Programming languages —

Generic packages of real and complex type declarations
and basic operations for Ada (including vector and matrix

types)

1 Scope

This International Standard defines the specifications of three generic packages of scalar, vector and matrix operations
called GENERIC_COMPLEX_TYPES, GENERIC_REAL_ARRAYS and GENERIC_COMPLEX_ARRAYS, the specification of a package
of related exceptions called ARRAY_EXCEPTIONS and the specification of a generic package of complex input and output
opcrations called COMPLEX_IO. A package body is not required for ARRAY_EXCEPTIONS; bodies of the other packages
arc not provided by this International Standard.

The specifications of non-generic packages called COMPLEX_TYPES, REAL_ARRAYS and COMPLEX_ARRAYS are also defined,
together with those of analogous packagésifon other procisions. | This International Standard does not provide the
bodies of these packages.

This International Standard. specifics certain fundamental scalar; ovector .and, matrix arithmetic operations for real,
imaginary and complex munbers. They were, chosen: becauseof, their utility in various application areas; morcover,
they are needed to support a generic package for complex clementary functions.

This International Standard is applicable to programming cnvironments conforming to ISO/IEC 8652.

NOTE — This International Standard is specifically designed for applicability in programming environments conforming to
ISO/IEC 8652:1987. Except for the packages and generic packages dealing with arrays, comparable facilities are specified in
ISO/IEC 8652:1995; specifications for the generic array packages comforming to ISO/IEC 8652:1995 are provided in annex G.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this Interna-
tional Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision,
and partics to agreements based on this International Standard are encouraged to investigate the possibility of applying
the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently
valid International Standards.

ISO/IEC 8652, Information technology — Programming languages Ada.

ISO/IEC 11430, Information technology Programming languages Generic package of elementary functions for
Ada.

ISO/IEC 11729, Information technology Programming languages Generic package of primitive functions for
Ada.

ISO/IEC 13814, Information technology Programining languages — Generic package of complex elementary func-
tions for Ada.

ISO/IEC 13813:1998(E) © ISO/IEC

3 Types and operations provided

The following record type, scalar type and four array types are exported by the packages provided by this International
Standard:

COMPLEX IMAGINARY
REAL_VECTOR REAL_MATRIX
COMPLEX_VECTOR COMPLEX_MATRIX

Type COMPLEX provides a cartesian representation of complex scalars; type IMAGINARY is provided to represent pure
imaginary scalars; two composite types with clements of type REAL are provided, REAL_VECTOR and REAL_MATRIX,
to represent real vectors and matrices; and two composite types with elements of type COMPLEX are provided, COM-
PLEX_VECTOR and COMPLEX_MATRIX, to represent complex vectors and matrices.

The following twenty-four operations arc provided:

ll+l' n_mn ”*" H/"

nen ne=" n>n "=t

k!t "abs" CONJUGATE TRANSPOSE

RE M SET_RE SET_IM
COMPOSE_FROM_CARTESIAN MODULUS ARGUMENT COMPOSE_FROM_POLAR
UNIT_VECTOR IDENTITY_MATRIX GET PUT

These are the usual mathematical operators I (+¢ =" and /) for real, esmuplex and imaginary scalars, and for real
and complex vectors and matrices (together with analogous componentwise operations for vectors); the relational
operators (<, <=, > and >=) for imaginary scalars; thesexpoticitiationooperator (*x) for complex and imaginary scalars,
and for real and complex vectorns;/thendbsolute vahielopenatord(abs) forareal, iutaginaryand complex scalars, and for
real and complex vectors and matrices; the conjugate wperation (CONJUGATE) for complex and imaginary scalars, and
for complex vectors and matrices; the transpose operation (TRANSPOSE) for real and complex matrices; the cartesian
component-part opcrations (RE, IM, SET_RE, SET_IM and COMPOSE_FROM_CARTESIAN) for complex scalars, vectors
and matrices (and, where applicable, for imaginary scalars), for selecting component-parts and for composing from
component-parts; the polar component-part operations (MODULUS, ARGUMENT and COMPOSE_FROM_POLAR) for complex
scalars, vectors and matrices, for sclecting component-parts and for composing from component-parts; the initializing
operations (UNIT_VECTOR and IDENTITY_MATRIX) for real and complex vectors and matrices; and the input/ontput
operations (GET and PUT) for complex scalars.

4 Instantiations

This International Standard describes generic packages GENERIC_COMPLEX_TYPES, GENERIC_REAL_ARRAYS, GENER-
IC_COMPLEX_ARRAYS and COMPLEX_IO. Each package has a generic formal paramecter, which is a generic formal
floating-point type named REAL. At instantiation, this paramecter determines the precision of the arithmetic.

This International Standard also describes non-generic packages COMPLEX_TYPES, REAL_ARRAYS and COMPLEX_ARRAYS,
which provide the same capability as instantiations of the packages GENERIC_COMPLEX_TYPES, GENERIC_REAL_ARRAYS
and GENERIC_COMPLEX_ARRAYS. It is required that non-generic packages be constructed for cach precision of floating-
point type defined in package STANDARD.

Depending on the implementation, the user may or may not be allowed to specify a generic actual type having a range
constraint (sce clause 5). If allowed, such a range constraint will have the nsual effect of causing CONSTRAINT_ERROR
to be raised when a scalar argument outside the user’s range is passed in a call to one of the subprograms, or when
one of the subprograins attempts to return a scalar value (or to coustruct a composite value with a scalar component
or element) outside the user’s range. Allowing the generic actual type to have a range constraint also has some
implications for implementers.

2

© ISO/IEC ISO/IEC 13813:1998(E)

5 Implementations

Portable implementations of GENERIC_COMPLEX_TYPES, GENERIC_REAL_ARRAYS, GENERIC_COMPLEX_ARRAYS and COM-
PLEX_IO arc strongly encouraged. However, implementations are not required to be portable. In particular, an
implementation of this International Standard in Ada may usc pragma INTERFACE or other pragmas, unchecked
conversion, machine-code insertions, or other machine-dependent techniques as desired.

An implementation is allowed to make reasonable assumptions about the environment in which it is to be used,
but only when necessary in order to match algorithms to hardware characteristics in an economical manner. For
example, an implementation is allowed to limit the precision it supports (by stating an assumed maximum value for
SYSTEM.MAX_DIGITS), since portable implementations would not, in general, be possible otherwise. All such limits
and assumptions shall be clearly documented. By convention, an implementation of GENERIC_COMPLEX_TYPES, GENER-
IC_REAL_ARRAYS, GENERIC_COMPLEX_ARRAYS or COMPLEX_IO is said not to conform to this International Standard in
any environment in which its limits or assumptions are not satisfied, and this International Standard does not define
its behavior in that environment. In effect, this convention delimits the portability of implementations.

For any of the generic packages GENERIC_COMPLEX_TYPES, GENERIC_REAL_ARRAYS, GENERIC_COMPLEX_ARRAYS or COM-
PLEX_IO, an implementation may impose a restriction that the generic actual type shall not have a range constraint
that reduces the range of allowable values. If it does impose this restriction, then the restriction shall be documented,
and the effects of violating the restriction shall be one of the following:

Compilation of a unit containing an instantiation of that generic package is rejected.

CONSTRAINT_ERROR of PROGRAM_ERROR.s Taised during the elaboration of aryinstantiation of that generic pack-
age.

Conversely, if an implementation does not impose the restriction, then such a range constraint shall not be allowed,
when included with the user’s actual type, to interfere withs the internal computations of the subprograms; that is, if
the arguments and result (of functions),ion their-¢ompeonents, are;within therange of the type, then the implementation
shall return the result (if any) and shall 1ot) raise an-exeeptions (suchoas CONSTRAINT_ERROR).

Any of the restrictions discussed above may in fact be inherited from implementations of the package GENERIC_ELE-
MENTARY_FUNCTIONS of ISO/IEC 11430 and the package GENERIC_PRIMITIVE_FUNCTIONS of ISO/IEC 11729, if used.
The dependence of an implementation on such inherited restrictions should be documented.

Lmplementations of GENERIC_COMPLEX_TYPES, GENERIC_REAL_ARRAYS and GENERIC_COMPLEX_ARRAYS shall function
properly in a tasking environment. Apart from the obvious restriction that an implementation of these packages shall
avoid declaring variables that are global to the subprograms, no special constraints are imposed on implementations.
With the exception of COMPLEX_IO, nothing in this International Standard requires the use of such global variables.

Some hardware and their accompanying Ada implementations have the capability of representing and discriminating
between positively and negatively signed zeros as a means (for example) of preserving the sign of an infinitesimal
quantity that has underflowed to zero. Iimplementations of these packages may exploit that capability, when available,
s0 as to exhibit continuity in the results of ARGUMENT as certain limits are approached. At the same time, implemen-
tations in which that capability is unavailable are also allowed. Because a definition of what comprises the capability
of representing and distinguishing signed zeros is beyond the scope of this International Standard, implementations
arc allowed the freedom not to exploit the capability, even when it is available. This International Standard does not,
specify the signs that an implementation exploiting signed zeros shall give to zcro results; it does, however, specify
that an implementation exploiting signed zeros shall yield a scalar result (or a scalar element of a composite result)
for ARGUMENT that depends on the sign of a zero imaginary component of a scalar argument (or a corresponding scalar
clement of a composite argument). An implementation shall exercise its choice consistently, cither exploiting signed-
zero behavior everywhere or nowhere in these packages. In addition, an implementation shall document its behavior
with respect to signed zeros.

In implementations of GENERIC_COMPLEX_TYPES and GENERIC_COMPLEX_ARRAYS, all operations involving mixed real

and complex arithmetic are required to construct the result by using real arithmetic (instcad of by converting rcal
values to complex values and then using complex arithmetic). This is to facilitate conformance with IEEE arithmetic.

3

ISO/IEC 13813:1998(E) © ISO/IEC

6 Exceptions

The ARGUMENT_ERROR cxception is declared in GENERIC_COMPLEX_TYPES and GENERIC_COMPLEX_ARRAYS. This excep-
tion is raised by a subprogram in these generic packages when the argument(s) of the subprogram violate one or more
of the conditions given in the subprogram’s definition (sce clause 8).

NOTE — These conditions are related only to the mathematical definition of the subprogram and are therefore implementation
independent.

The ARRAY_INDEX_ERROR cxception is declared in GENERIC_REAL_ARRAYS and GENERIC_COMPLEX_ARRAYS. This cxcep-
tion is raised by a subprogram in these generic packages when the argument(s) of the subprogram violate one or more
of the conditions for matching clements of arrays (as in predefined equality); that is, for dyadic array operations,
the bounds of the given left and right array operands need not be equal, but their appropriate vector lengths or row
and/or column lengths (for matrices) shall be equal.

The ARGUMENT_ERROR and ARRAY_INDEX_ERROR exceptions arc declared as renamings of exceptions of the same name de-
clared in the ELEMENTARY_FUNCTIONS_EXCEPTIONS package of ISO/IEC 11430 and in the ARRAY_EXCEPTIONS package of
this International Standard, respectively. These exceptions distinguish neither between different kinds of argument er-
rors or array index errors, nor between different subprograms. The ARGUMENT_ERROR exception does not distinguish be-
tween instantiations of either GENERIC_COMPLEX_TYPES, GENERIC_COMPLEX_ARRAYS, thc GENERIC_ELEMENTARY_FUNC-
TIONS package of ISO/IEC 11430 or the GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS package of ISO/IEC 13814. The
ARRAY_INDEX_ERROR cxception does not distinguish between different instantiations of cither GENERIC_REAL_ARRAYS
or GENERIC_COMPLEX_ARRAYS.

Besides ARGUMENT_ERROR and ARRAY_INDEX_ERROR, the¢ ouly exceptions allowed during a call to a subprogram in these
packages are predefined exceptions, as follows:

Virtually any predefined exception is possible during the evaluation of an argument of a subprogram in these
packages. For example, NUMERIC_ERROR, CONSTRAINT/ERROR; or:cven PROGRAM_ERROR could be raised if an argument
has an undefined value; and|as/stateddinldlanseldyafitherimplementation allows tangé constraints in the generic
actual type, then CONSTRAINT_ERROR will belraised whei-thie vallie of%an argument lies outside the range of the
user’s generic actual type. Additionally, STORAGE_ERROR could be raised, c.g. if insufficient storage is available to
perform the call. All these exceptions are raised before the body of the subprogram is entered and therefore have
no bearing on implementations of these packages.

For the subprograms in COMPLEX_IO only, any of the exceptions declared (by renaming) in TEXT_I0 may be
raised in the appropriate circumstances. For example, TEXT_I0.LAYOUT_ERROR will be raised during an output
operation to a string if the given string is too short to hold the formatted output. Additionally, TEXT_I0.DATA_ER-
ROR will be raised during the evaluation of arguments of an input operation if the components of the complex
value obtained are not of the type REAL, or, for implementations of COMPLEX_IO0 not based on an instantiation of
TEXT_IO.FLOAT_IO, if the input sequence does not have the required syntax. Implementations of COMPLEX_I0 which
make use of an instantiation of TEXT_IO.FLOAT_IO shall make every attempt to raise TEXT_I0.DATA_ERROR in the
presence of invalid input sequence syntax; however, this International Standard recognizes the difficulty in handling
all possible invalid input sequences for these types of implementations.

Also, as stated in clause 4, if the implementation allows range constraints in the generic actual type, then
CONSTRAINT_ERROR will be raised when a subprogram in these packages attempts to return a scalar value (or to
construct a composite value with a scalar component or element) outside the range of the user’s generic actual type.
The exception raised for this reason shall be propagated to the caller of the subprogram.

Whenever the arguments of a subprogram are such that a scalar result (or a scalar component or clement of
a composite result) permitted by the accuracy requirements would exceed REAL' SAFE_LARGE in absolute value, as
formalized below in clause 10, an implementation may raise (and shall then propagate to the caller) the exception
specified by Ada for signaling overflow.

Once exccution of the body of a subprograin has begun, an iinplementation may propagate STORAGE_ERROR to
the caller of the subprogram, but only to signal the unexpected exhaustion of storage. Similarly, once execution
of the body of a subprogramn has begun, an implementation may propagate PROGRAM_ERROR to the caller of the
subprogram, but only to signal errors made by the user of these packages.

© ISO/IEC ISO/IEC 13813:1998(E)

No exception is allowed during a call to a subprogram in these packages except those permitted by the foregoing rules.
In particular, for arguments for which all scalar results (or scalar components or elements of all composite results)
satisfying the accuracy requirements remain less than or equal to REAL'SAFE_LARGE in absolute value, a subprogram
shall locally handle an overflow occurring during the computation of an intermediate result, if such an overflow is
possible, and not propagate an exception signaling that overflow to the caller of the subprogram.

The only exceptions allowed during an instantiation of GENERIC_COMPLEX_TYPES, GENERIC_REAL_ARRAYS, GENER-
IC_COMPLEX_ARRAYS or COMPLEX_IO, including the execution of the optional sequence of statements in the body
of the instance, are CONSTRAINT_ERROR, PROGRAM_ERROR and STORAGE_ERROR, and then only for the following reasons.
The raising of CONSTRAINT_ERROR during instantiation is only allowed when the implementation imposes the restriction
that the generic actual type shall not have a range constraint, and the user violates that restriction (it may, in fact, be
an inescapable consequence of the violation). The raising of PROGRAM_ERROR during instantiation is only allowed for
the purpose of signaling errors made by the user - for example, violation of this same restriction, or of other limitations
of the implementation. The raising of STORAGE_ERROR during instantiation is only allowed for the purpose of signaling
the exhaustion of storage.

NOTE — In ISO/IEC 8652:1987, the exception specified for signaling overflow or division by zero is NUMERIC_ERROR, but
ISO/IEC 8652:1995 replaces that by CONSTRAINT_ERROR.

7 Arguments outside the range of safe numbers

ISO/IEC 8652 fails to define the result safe interval of any basic or predefined operation of a real subtype when the
absolute value of one of its dperéhds exceedsithe largestisafe number of thic operand subtype. (The failure to define a
result in this case oceurs because no safe interval is defined for the operand in question.) In order to avoid imposing
requirements that would, consequently, betmore sfringcnt than thoseof Ada itself, this International Standard likewise
does not define the result of a contained subprogram when the absolute value of one of its scalar arguments (or one of the
scalar components or clements of composite arguments);exceeds;REAL' SAFE_LARGE. All of the accuracy requirements
and other provisions of the,following clauses are amderstood. ito; besimplicitly qualified by the assumption that scalar
subprogram arguments (or scalar components or elements of composite subprogram arguments) are less than or equal
to REAL'SAFE_LARGE in absolute value.

8 Method of specification of subprograms

Some of the subprograms have two or more overloaded forms. For cach form of a subprogram covered by this Interna-
tional Standard, the subprogram is specified by its parameter and result type profile, the domain of its argument(s) if
restricted, its range if restricted, and the accuracy required of its implementation. The meaning of, and conventions
applicable to, the domain, range and accuracy specifications are described below.

The specification of cach subprogram covered by this International Standard includes, where necessary, a character-
ization of the argument values for which the subprogram is mathematically defined. It is expressed by inequalities
or other conditions which the arguments shall satisfy to be valid. Whenever the arguments fail to satisfy all the
conditions, the implementation shall raise ARGUMENT_ERROR. It shall not raise that exception if all the conditions are
satisfied.

Inability to deliver a result for valid arguments because the scalar result (or a scalar component or element of the
composite result) overflows, for example, shall not raise ARGUMENT_ERROR, but shall be treated in the same way that
Ada defines for its predefined floating-point operations (sce clause 10).

The usual mathematical meaning of the “range” of a function is the set of values into which the function maps the
values in its domain. Some of the subprograms covered by this International Standard (for example, ARGUMENT) arc
mathematically multivalued, in the sense that a given argument value can be mapped by the subprogram into many
different result values. By means of range restrictions, this International Standard imposes a uniqueness requircment
on the results of multivalued functions, thereby reducing themn to single-valued functions.

The range of cach subprogram result is shown, where necessary, in the specifications. Range definitions take the form
of inequalities limiting the results of a subprogram. An implementation shall not exceed a limit of the range when

5

ISO/IEC 13813:1998(E) © ISO/IEC

that limit is a safe number of REAL (like 0.0, 1.0, or CYCLE/2.0 for certain values of CYCLE). On the other hand, when
a range limit is not a safe number of REAL (like 7, or CYCLE/2.0 for certain other values of CYCLE), an implementation
may exceed the range limit, but may not exceed the safe number of REAL next beyvond the range limit in the direction
away from the interior of the range; this is, in general, the best that can be expected from a portable iimplementation.
Effectively, therefore, range definitions have the added effect of imposing accuracy requirements on implementations
above and beyond those presented as error bounds in the specifications (see clause 9).

9 Accuracy requirements

Because they are implemented on digital computers with only finite precision, the subprograms provided in these
A p)) prog p
generic packages can, at best, only approximate the corresponding mathematically defined operations.

The accuracy requirements contained in this International Standard define the latitude that implementations are
allowed in approximating the intended precise mathematical result with floating-point computations. Accuracy re-
quircments of two kinds are stated in the specifications. Additionally, range definitions impose requircments that
constrain the values implementations may yield, so the range definitions are another source of accuracy requirements
(in that context, the precise meaning of a range limit that is not a safe number of REAL, as an accuracy requirement,
is discussed in clause 8). Every result returned by a subprogram is subject to all of the subprogram’s applicable
accuracy requirements, except in the one case described in clause 12. In that case, the scalar result (or scalar compo-
nents or elements of the composite result) will satisfy a small absolute error requirement in licu of the other accuracy
requirements defined for the subprogram.

The accuracy requircinents on array operations arc defined 1 terins of corresponding accuracy requircments on their
(real or complex) scalar clements, unless the tiathiematical |definfitiorn of) the operation includes an inner product
(indicated in the specifications as such). The accuracy of operations involving inner products is beyond the scope of this
International Standard, except that an implementation shall document what, if any, extended-precision accunulation
of intermediate results is used, to implement such inner prodicts.

The first kind of (scalar) accuracy requirement used inthe specifications is a “maximumn relative error requirement.”
It is specified by bounds on appropriate measures of the relative error in the computed result of a subprogram, which
shall hold (except as provided by the rules in clauses 10 and 12) for all arguments satisfying the conditions in the
domain definition, whenever those measures are defined.

Three forms of mecasure arc used in the specifications; they depend on the type (real, imaginary or complex) of
the scalar result. In the rcal or imaginary case, the measure is the usual “relative error”; in the complex case, the
measure used for cach component-part is, whenever possible, a “component-part error,” but in cases where substantial
cancellation may be involved this is relaxed to a “box error.”

For a real result, if the mathematical result is « and the computed result is 2, then the relative error rel_err(x) is
defined in the usual way:
rel_err(r) = |o — z|/|q|

provided the mathematical result is finite and nonzero.

For a complex result, if the mathematical result is « + 43 and the computed result is = 4 iy, then the component-part
errors real_comp_err(x), imag-comp_err(y) arc defined as:

real_comp_err(x) = |a — z|/|]
provided the mathematical component-part « is finite and nonzero, and
mmag-comp_err(y) = |3 —y|/|3]

provided the mathematical component-part 3 is finite and nonzero; and the box crrors real_box_err(z),
imag_box_err(y) arc defined as:
real_box_err(r) = |o — x|/ max(|«|, |3])

imag-box_err(y) = |3 — y|/ max(|«|, |A])

© ISO/IEC ISO/IEC 13813:1998(E)

provided the mathematical component-parts «, 3 are finite and not both zero.

In all other cases, the above measures of the relative error are not defined (i.c., when the mathematical result, or a
component-part of the mathematical result, is infinite or zero).

The sccond kind of (scalar) accuracy requirement used in the specifications is a stipulation, usually in the form of an
cquality, that the implementation shall deliver “prescribed results” for certain special arguments. It is used for two
purposcs:

to define the computed result when one of the measures of the relative error is undefined, i.c., when the
mathematical result (or a component-part of the mathematical result) is zero; and

to strengthen the accuracy requirements at special argument values.

When such a prescribed result (or component-part, of a prescribed result) is a safe number of REAL (like 0.0, 1.0
or CYCLE/2.0 for certain values of CYCLE), an implementation shall deliver that value. On the other hand, when a
prescribed result (or component-part of a prescribed result) is not a safe number of REAL (like 7, or CYCLE/2.0 for
certain other values of CYCLE), an implementation may deliver any value in the surrounding safe interval. Prescribed
results take precedence over maximum relative error requirements but never contravene them. Complex results need
not have the same kind of accuracy requirement for both of their component-parts. Where all results of an operation
arc prescribed, the operation is specified as “exact.”

Range definitions in the specifications, arc an additional source of accuracy requircments, as stated in clause 8. As an
accuracy requirement, a range définition hastheleffe¢tiof‘eliminating some of the Walues permitted by the maximum
relative error requirements, ¢.g. those outside the range.

10 Overflow

Floating-point hardware is typically incapable’ of itepreseriting “iimbers whose absolute value exceeds some
implementation-defined maximum. For the type REAL, that maximum will be at least REAL' SAFE_LARGE. For the sub-
programs defined by this International Standard, whenever the maximum relative error requirements permit a scalar
result (or a scalar component or element of a composite result) whose absolute value is greater than REAL' SAFE_LARGE,
the implementation may

vield any result permitted by the maximnm relative error requirements, or
raisc the exception specified by Ada for signaling overflow.

In addition, some of the functions are allowed to signal overflow for certain arguments for which neither component
of the result can overflow. This freedom is granted for operations involving either an inner product or complex
exponentiation. Permission to signal overflow in these cases recognizes the difficulty of avoiding overflow in the
computation of intermediate results, given the current state of the art.

NOTES

1 The rule permits an implementation to raise an exception, instead of delivering a result, for arguments for which the math-
ematical result (or a component-part of the mathematical result) is close to but does not exceed REAL'SAFE_LARGE in absolute
value. Such arguments must necessarily be very close to an argument for which the mathematical result (or a component-part
of the mathematical result) does exceed REAL'SAFE_LARGE in absolute value. In general, this is the best that can be expected
from a portable implementation with a reasonable amount of effort.

2 The rule is motivated by the behavior prescribed by ISO/IEC 8652 for the predefined operations. That is, when the set of
possible results of a predefined operation includes a number whose absolute value exceeds the implementation-defined maximum,
the implementation is allowed to raise the exception specified for signaling overflow instead of delivering a result.

3 In ISO/IEC 8652:1987, the exception specified for signaling overflow is NUMERIC_ERROR, but ISO/IEC 8652:1995 replaces
that by CONSTRAINT_ERROR.

ISO/IEC 13813:1998(E) © ISO/IEC

11 Infinities

An implementation shall raise the exception specified by Ada for signaling division by zero in the following specific
cases where the corresponding mathematical results, or component-parts thereof, are infinite:

a) division by (real, imaginary or complex) zero;
b) array operations whose mathematical definition involves division of an clement by (real or complex) zero;
¢) exponentiation of (real, imaginary or complex) zero by a negative (integer) exponent;

d) array operations whose mathematical definition involves exponentiation of (real or complex) zero by a negative
(integer) exponent;

NOTE — In ISO/IEC 8652:1987, the exception specified for signaling division by zero is NUMERIC_ERROR, but ISO/IEC 8652:1995
replaces that by CONSTRAINT_ERROR.

12 Underflow

Floating-point hardware is typidally dngapable of reprcscating monzéromiumbersiwhose absolute value is less than
some implementation-defined minimum. For the type REAL, that minimum will be at most REAL' SAFE_SMALL. For the
subprograms defined by this International Standardywhonover thenrfiaximumpelative error requirements permit a scalar
result (or a scalar component or element of a composite result) whose absohite value is less than REAL'SAFE_SMALL
and a prescribed result is not stipulated, the implementation may vield for that scalar result (or a scalar component
or element of that composite result)

a) any value permitted by the maximum relative error requirements;

b) any nonzero value less than or equal to REAL'SAFE_SMALL in magnitude (and having the correct sign, unless
the maximum relative error requirements permit values with either sign); or

¢) zero.

NOTES

1 Whenever the behavior on underflow is as described in 12 b) or 12 ¢), the maximum relative error requirements are, in
general, unachievable and are waived.

2 The rule permits an implementation to deliver a scalar result (or component or element of a composite result) violating the
maximum relative error requirements for arguments for which the mathematical result (or component-part of the result) equals
or slightly exceeds REAL'SAFE_SMALL in absolute value. Such arguments must necessarily be very close to an argument for which
the mathematical result (or component-part of the result) is less than REAL'SAFE_SMALL in absolute value. In general, this is
the best that can be expected from a portable implementation with a reasonable amount of effort.

13 Generic Complex Types Package

The generic package GENERIC_COMPLEX_TYPES defines operations and types for scalar complex arithmetic. One generic
formal parameter, the floating-point type REAL, is defined for GENERIC_COMPLEX_TYPES. The corresponding generic
actual paramecter determines the precision of the arithmetic to be used in an instantiation of this generic package.

The Ada package specification for GENERIC_COMPLEX_TYPES is given in annex A.

8

© ISO/IEC ISO/IEC 13813:1998(E)

13.1 Types

Two types arc defined and cxported by GENERIC_COMPLEX_TYPES. The typc COMPLEX provides a cartesian represen-
tation of a complex number; it is declared as a record with two components which represent the real and imaginary
parts. The type IMAGINARY is provided to represent a pure imaginary number; it is declared as a private type whose
full type declaration reveals it to be derived from type REAL.

13.2 Constants

’

.0
.0;

i: constant IMAGINARY

1
j: constant IMAGINARY 1

Each constant represents the imaginary unit value.

Each constant is exact.

13.3 COMPLEX selection, conversion and composition operations

function RE (X : COMPLEX) return REAL;
function IM (X : COMPLEX) return REAL;

Each function returns the specified cattesian component=part, of X;
Each function is exact.

procedure SET_RE (X : in out COMPLEX;

RE : in REAL) ;
procedure SET_IM (X "in‘out’COMPLEX;
IM : in REAL) 4

Each procedure resets the specified (cartesian) component of X; the other (cartesian) component is unchanged.
Each procedure is exact.

function "+" (LEFT : REAL;

RIGHT : IMAGINARY) return COMPLEX;
function "-" (LEFT : REAL;

RIGHT : IMAGINARY) return COMPLEX;

Each operation returns the COMPLEX result of applying the appropriate standard mathematical operation for arithmetic
between real and imaginary numbers. This is also the standard mathematical operation for composing a complex
number from real and imaginary numbers.

The real component-part of the result is exact. The imaginary component-part of the result shall satisfy the accuracy
requirement of the appropriate unary operation for real arithmetic, as defined by Ada.

function "+" (LEFT : IMAGINARY;

RIGHT : REAL) return COMPLEX;
function "-" (LEFT : IMAGINARY;

RIGHT : REAL) return COMPLEX;

Each operation returns the COMPLEX result of applying the appropriate standard mathematical operation for arithmetic
between real and imaginary numbers. This is also the standard mathematical operation for composing a complex
number from real and imaginary numbers.

The real component-part of the result shall satisfy the accuracy requirement of the appropriate unary operation for
real arithmetic, as defined by Ada. The imaginary component-part of the result is exact.

	<ýª"á{|6�ÝÒ:x8*¤SôR1Ñy,W±`¥¡àrñ×!öû+Ê‡˙uÔ’Ž˚v"16�Ø‘^vP	�6Û´��‚ÔÍºØ−�öË#ß6Ï'eíÊM‰

