INTERNATIONAL STANDARD

First edition 2004-12-01

Plastics — Film and sheeting — Measurement of water-contact angle of corona-treated films

Plastiques — Film et feuille — Détermination de l'angle de contact avec l'eau des feuils traités par effluve

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 15989:2004 https://standards.iteh.ai/catalog/standards/sist/09b5ee5d-939f-4385-beba-65c898edc9d7/iso-15989-2004

Reference number ISO 15989:2004(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 15989:2004 https://standards.iteh.ai/catalog/standards/sist/09b5ee5d-939f-4385-beba-65c898edc9d7/iso-15989-2004

© ISO 2004

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org

Published in Switzerland

Contents

Page

1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Principle	2
5	Apparatus	
6	Test liquid	4
7	Test specimens	4
8	Conditioning	4
9	Test conditions	4
10	Procedure	4
11	Calculation and interpretation of results	6
12	Precision	8
13	Test report	8
Ann	ex A (informative) Significance and use of contact-angle measurements	9
Ann	ex B (informative) Interference effects in the measurement of the contact angle	11
Ann	ex C (informative) Surface tension and contact angle 1.2.1.	12

ISO 15989:2004 https://standards.iteh.ai/catalog/standards/sist/09b5ee5d-939f-4385-beba-65c898edc9d7/iso-15989-2004

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 15989 was prepared by Technical Committee ISO/TC 61, Plastics, Subcommittee SC 11, Products.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 15989:2004 https://standards.iteh.ai/catalog/standards/sist/09b5ee5d-939f-4385-beba-65c898edc9d7/iso-15989-2004

Plastics — Film and sheeting — Measurement of water-contact angle of corona-treated films

1 Scope

This International Standard specifies a method of measuring the contact angle of water droplets on coronatreated polymer film surfaces and subsequently determining the wetting tension of the film.

The method is applicable to practically any polymer film. It is not applicable, however, if the surface of the film exhibits a chemical affinity for water.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. TANDARD PREVIEW

ASTM E 691:1999, Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method (Equivalent to ISO 5725-2:1994, Accuracy (trueness and precision) of measurement methods and results — Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method) measurement method.

65c898edc9d7/iso-15989-2004

ASTM D 724, Standard Test Method for Surface Wettability of Paper (Angle-of-Contact Method)

ASTM D 5946, Standard Test Method for Corona-Treated Polymer Films Using Water Contact Angle Measurements

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

surface energy

energy associated with the intermolecular forces at the interface between two surfaces, measured as free energy per unit area

NOTE It is expressed in mN/m.

3.2

wetting tension

 $\gamma_{\rm c}$

tension taken to be equal to the surface tension of the liquid which just exhibits a zero contact angle with the surface of a polymer film

NOTE This is used to give an estimate of the film's surface energy in mN/m. The unit dyne/cm is also used in industry for surface energy and wetting tension (1 dyne/cm = 1 mN/m).

3.3

polarity

value which quantifies the concentration of polar functional groups on a polymer film surface

NOTE It is expressed as the polar component of the surface energy over the total surface energy.

3.4

static contact angle

 θ

angle between a plane solid surface and the tangent drawn in the vertical plane at the interface between the plane solid surface and the surface of a droplet of liquid resting on the surface

4 Principle

Droplets of water are placed on a specimen of film and the contact angle measured. The wetting tension of the film is then determined from a conversion chart.

See Annex A for the significance and use of contact-angle measurements and Annex B for interference effects in the measurement of the contact angle.

5 Apparatus

5.1 Contact-angle meter (goniometer) ANDARD PREVIEW

A commercially available contact-angle meter, including a light source, optical system, specimen stage and liquid delivery system, may be used.

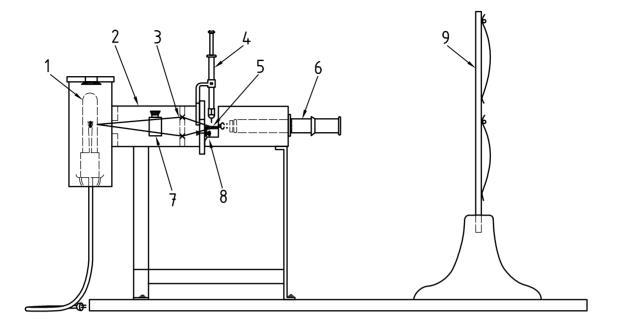
The light source can be a halogen, incandescent or fibre-optic type of lamp, as long as neither the specimen nor the liquid is affected by the heat from the light actatog/standards/sist/09b5ee5d-939t-4385-beba-

The viewing optics can be video, CCD camera, ocular lens or projection optics and shall be configured such that magnifications from $\times 6$ to $\times 30$ can be used.

The specimen stage shall be such that the specimen can be positioned with the test surface flat and horizontal. When the specimen is moved to view a new area, it shall be possible to avoid the previously wetted area.

The liquid-delivery system shall be a pump-driven or manual microsyringe. For the greatest droplet-formation accuracy, a small-capacity, i.e. 100 μ l to 250 μ l, microsyringe shall be used.

In order to be able to test liquids requiring different droplet sizes, it shall be possible to accommodate flat-tipped needles of various gauges from 24 gauge to 32 gauge. Stainless-steel needles are preferred, but other types, such as needles coated with polytetrafluoroethylene, may also be used.


5.2 Droplet image projection apparatus

Alternatively, a droplet-projection contact-angle meter (see Figure 1) may be used. It shall be capable of projecting the image of a droplet of liquid on the surface of the substrate onto a screen so that the angle of the tangent to the droplet at the substrate surface can be measured. The apparatus shall consist of the following elements:

5.2.1 Angle-measuring instrument, such as a protractor or similar device, for measurement of the contact angle.

5.2.2 Filter, used to reduce the heat falling on the specimen and the droplet.

5.2.3 Ventilated lamp house, containing a light source.

Key

3

250 W projection lamp 1

2 tube **iTeh STANDARD PREVIEW** lens

- 4 hypodermic syringe
- 5 specimen
- 6 microscope

ISO 15989:2004

(standards.iteh.ai)

- 7 water cell https://standards.iteh.ai/catalog/standards/sist/09b5ee5d-939f-4385-beba-
- 65c898edc9d7/iso-15989-2004 8 horizontal specimen stage
- 9 frosted-glass screen

Figure 1 — User-constructed droplet-projection contact-angle meter

5.2.4 Microscope draw tube, suitable for projecting the image of the droplet onto a screen with an enlargement of $\times 25$.

5.2.5 Frosted-glass screen, onto which the droplet image is projected.

5.2.6 Horizontal specimen stage, capable of accommodating the test specimen, and with a means of adjusting the stage vertically.

5.2.7 Tube, containing a lens to concentrate the beam of light.

5.2.8 Hypodermic syringe, capacity 1 ml, fitted with a flat-tipped 27 gauge stainless-steel needle and capable of providing 150 to 200 droplets.

5.3 Computer-based systems

PC-based systems with automatic image analysis capabilities are available for contact-angle measurements. These systems provide a greater degree of accuracy in comparison to the droplet-projection system.

6 Test liquid

Use distilled water or ultra-pure water (as used for HPLC). Keep the water in a clean container.

NOTE 1 Reagent-grade deionized water may also be used, but the results will not be as accurate.

NOTE 2 Any contamination introduced into the water will affect the results.

7 Test specimens

7.1 The minimum amount of film required for this test is a strip approximately 25 mm wide and 300 mm long. If the specimen is taken from a roll, the direction of the specimen relative to the machine direction of the web shall be noted.

7.2 Extreme care shall be taken to prevent the surface of the specimen from being touched or handled in the areas in which the test is to be made.

7.3 The number of measurements per specimen shall be determined using published tables for sampling plans. The recommended number of readings per specimen is ten.

NOTE Complete tables can be found in most books on quality control. See e.g. J.A. Duncan, Quality Control and Industrial Statistics, 3rd ed., Irwin, Homewood, IL, USA, 1965.

7.4 For the purpose of determining the wetting-tension profile across the width of the roll, contact-angle measurements can be made at intervals of one specimen length (i.e. approximately 300 mm) across the width of the roll.

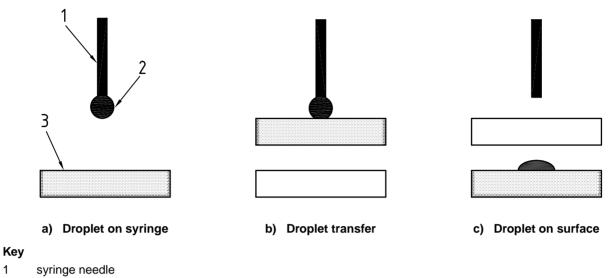
https://standards.iteh.ai/catalog/standards/sist/09b5ee5d-939f-4385-beba-65c898edc9d7/iso-15989-2004

8 Conditioning

8.1 Conditioning is not generally required for routine quality assurance or process control measurements as it will affect the measured value which will no longer be representative of the actual conditions.

8.2 Conditioning is required for interlaboratory measurements intended to compare results. In such cases, condition the specimens at 23 °C \pm 2 °C and (50 \pm 5) % relative humidity for not less than 40 h prior to testing. In cases of disagreement, the tolerances shall be \pm 1°C and \pm 2 % relative humidity. Whenever possible, conduct testing under the same conditions as used for conditioning.

9 Test conditions


Special test conditions are not generally required for routine quality assurance.

10 Procedure

10.1 Place a specimen on the specimen holder of the instrument. Make sure the specimen is lying flat without wrinkles and distortions.

10.2 Suspend a 1 μ l to 2 μ l droplet of water (see Clause 6) at the end of the syringe needle. Bring the surface of the mounted specimen into contact with the pendant droplet. Then move the surface of the specimen away to complete droplet transfer (see Figure 2). Do not drop or squirt droplets on to the specimen surface.

NOTE Larger, 5 µl to 8 µl, droplets may be used. However, larger droplets may lose their spherical shape, resulting in some degree of error.

2 water

1

3 specimen surface

Figure 2 — Water droplet transfer technique

10.3 Use one of measurement techniques a), b) and c) described below to determine the contact-angle value. Follow the instrument manufacturer's instructions concerning the maximum time between transferring the water droplet and measurement, if specified. If not specified, make the measurement within 1 min \pm 10 s of droplet ISO 15989:2004 transfer.

- Measure the contact angle directly with a protractor, aligning the protractor cursor line with the tangent to a) the droplet at the specimen surface.
- b) Measure the angle between the specimen surface and the line from the three-phase point to the apex of the droplet. Multiply the number obtained by 2 to give the contact angle.

NOTE This technique is the subject of US Patent 5,268,733. ISO is not in a position to give any authoritative or comprehensive information about this patent. Users of this International Standard are expressly advised that determination of the risk of infringement of this patent is entirely their own reponsibility.

c) Determine the angle from the dimensions of the droplet image in accordance with ASTM D 724 or ASTM D 5946:

 $\theta = 2 - \arctan(H/R)$

where

- θ is the angle of contact of the droplet with the specimen surface;
- Η is the height of the droplet image;
- Ris half the width of the droplet image.

NOTE 1 Method a) is biased due to the subjective nature of finding a tangent to the droplet image at the three-phase point. If method a) is used, the bias of each operator's measurements should be determined. Methods b) and c) are generally free of bias.

NOTE 2 The algorithms used in methods b) and c) assume a spherical droplet configuration and are most accurate for small droplets ($\leq 1 \mu$ l in volume).

10.4 Advance the specimen to place the next droplet on a previously untouched area.

10.5 Make preferably ten contact-angle measurements on the specimen.