INTERNATIONAL STANDARD

First edition 2004-07-01

Road vehicles — Side impact test procedures for the evaluation of occupant interactions with side airbags by pole impact simulation

Véhicules routiers — Modes opératoires d'essai de choc latéral **iTeh** ST dynamique pour l'évaluation de l'interaction des occupants avec les sacs gonflables latéraux par simulation d'une collision contre un poteau (standards.iteh.ai)

ISO 15829:2004 https://standards.iteh.ai/catalog/standards/sist/0efc5e7f-9c3d-41b0-8adb-9057f966550c/iso-15829-2004

Reference number ISO 15829:2004(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 15829:2004 https://standards.iteh.ai/catalog/standards/sist/0efc5e7f-9c3d-41b0-8adb-9057f966550c/iso-15829-2004

© ISO 2004

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland

Contents

Forewo	ord	. iv
ntroduction		v
1	Scope	1
2	Normative references	1
3	Terms and definitions	1
4	Test facility and equipment	2
5	Test configurations	2
6	Preparation of test vehicle	3
7	Test devices	4
8	Instrumentation	4
9	Installation of test dummy	4
10	Impact response measurement	6
11	Velocity ITeh STANDARD PREVIEW	6
Annex	A (informative) Side impact against pole test procedure 1	8
Annex	B (informative) Side impact against pole test procedure 2	10
Annex	C (informative) Side impact against pole test procedure 3	14
Bibliog	nttps://standards.iten.ai/cataiog/standards/sist/0efc5e/f-9c3d-41b0-8adb- raphy	17

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 15829 was prepared by Technical Committee ISO/TC 22, *Road vehicles*, Subcommittee SC 10, *Impact test procedures*.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 15829:2004 https://standards.iteh.ai/catalog/standards/sist/0efc5e7f-9c3d-41b0-8adb-9057f966550c/iso-15829-2004

Introduction

Side airbags/curtains (SAB) are deployable devices intended to help reduce the risk of injury to the head and/or chest and/or pelvis of vehicle occupants. Side impact accident data indicate that the vehicle side is most likely to be contacted by a passenger car, a truck or a fixed object, such as a pole or a tree. Accident data also indicate that serious to fatal injury in side impact is most likely to occur to the head, chest and abdomen, neck, pelvis and extremities.

During its inflation process, an airbag generates a considerable amount of kinetic energy and, as a result, substantial forces can be developed between the deploying airbag and the nearby occupant. Although there is very little experience with vehicles equipped with SAB, preliminary laboratory tests indicate that these forces can be sufficient to injure the vehicle occupant. Further, a considerable but unknown portion of the occupant population does not drive/ride in exactly the vehicle design position, but lean/rest in various ways against the armrest, door or other side panel of the vehicle, where airbag reaction forces may be even greater. These test procedures were developed to improve the understanding of such interactions during vehicle-to-pole crashes and to help aid in the assessment of future airbag designs.

SAB may deploy from the door or side trim panel, the armrest, the seat back or cushion, the roof support pillars, and the roof rail area. Occupants can range in size from young children to very large adults. In some cases, dynamic sled tests with partial vehicle bodies may suffice; in others, the whole vehicle is dynamically tested. Engineering judgement needs to be used when selecting the tests to be conducted with each individual system. Such tests may be aimed not only at producing interactions with the most severe results, but also at identifying those conditions that produce the least interaction and most satisfactory injury criteria (performance) results.

ISO 15829:2004 https://standards.iteh.ai/catalog/standards/sist/0efc5e7f-9c3d-41b0-8adb-9057f966550c/iso-15829-2004

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 15829:2004</u> https://standards.iteh.ai/catalog/standards/sist/0efc5e7f-9c3d-41b0-8adb-9057f966550c/iso-15829-2004

Road vehicles — Side impact test procedures for the evaluation of occupant interactions with side airbags by pole impact simulation

1 Scope

This International Standard specifies dynamic side impact test procedures with poles for evaluating the effects of the interaction between side airbags and occupants of road vehicles.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1176:1990, Road vehicles — Masses — Vocabulary and codes

ISO 3784, Road vehicles — Measurement of impact velocity in collision tests

ISO 6487, Road vehicles — Measurement techniques in impact tests — Instrumentation https://standards.iteh.ai/catalog/standards/sist/0efc5e7f-9c3d-41b0-8adb-

ISO 6549, Road vehicles — Procedure for H and R-point determination

SAE J211-1, Instrumentation for impact test — Part 1: Electronic instrumentation

SAE J211-2, Instrumentation for impact test — Part 2: Photographic instrumentation

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

side airbag

SAB

airbag designed primarily to help reduce occupant injury potential where the significant collision force vector is lateral

3.1.1

head airbag

airbag that deploys between the occupant's head and the vehicle side structure or an external object that could contact the head

3.1.2

chest airbag thoracic airbag

airbag that deploys between the occupant's upper torso and the vehicle side structure

3.1.3

pelvic airbag

airbag that deploys between an occupant's pelvis/thigh area and the vehicle side structure

3.1.4

combination airbag

airbag that deploys to help protect two or more body areas of an occupant

EXAMPLE Head and chest combination airbag.

3.2

rigid pole

vertically-oriented, circular, rigid structure, beginning no more than 100 mm above the ground and extending above the roof of the impacting vehicle

NOTE The pole will preferably be 350 mm \pm 10 mm in diameter and set off from any vertical mounting surface (such as if attached to a fixed rigid barrier face) by at least 1 500 mm (see ISO 3560).

4 Test facility and equipment

4.1 Impact test site

The impact test site shall be a horizontal, smooth and hard surface of sufficient area to allow the specified speed to be reached prior to impact and to permit post-crash deceleration of the test vehicle while it remains on the surface of the test site.

(standards.iteh.ai)

4.2 Propulsion of test vehicle

The test vehicle shall be propelled to a point as close as possible to the rigid pole, at which point it shall be https://standards.iteh.ai/catalog/standards/sist/0etc5e7f-9c3d-41b0-8adb-9057f966550c/iso-15829-2004

4.3 Locus of side impact on test vehicle

The test vehicle may be impacted from either side. The impact point shall be visibly marked on the outside of the test vehicle prior to the test.

The maximum lateral offset to the prescribed impact point shall be \pm 20 mm.

4.4 Angle of impact

The side impact shall be performed with an impact angle of 90 $^\circ\pm$ 3 $^\circ.$

5 Test configurations

5.1 Dynamic pole crash test

Slide or propel the vehicle sideways into a rigid pole. Propulsion examples of how this is done by three major testers are given in Annexes A, B and C.

The vertical plane of impact shall be perpendicular to the longitudinal median plane of the vehicle and pass through the centre of gravity of the head.

6 Preparation of test vehicle

6.1 Mass of test vehicle

The vehicle test mass, m_{t} , shall be calculated as follows:

 $m_{\rm t} = m_{\rm k} + m_{\rm l} + m_{\rm d}$

where

- m_{k} is the complete vehicle kerb mass (ISO-M06) as defined in ISO 1176:1990, 4.6, in kilograms;
- m_1 is the rated cargo and luggage mass, in kilograms, such that

 $m_{\rm l} = m_{\rm p} - (68 \times {\rm DSC})$

where

 $m_{\rm p}$ is the maximum design pay mass (ISO-M09) as defined in ISO 1176:1990, 4.6, in kilograms;

DSC is the designated seating capacity of the test vehicle;

 $m_{\rm d}$ is the test dummy mass in kilograms.

iTeh STANDARD PREVIEW

The vehicle shall be ballasted to achieve the test mass to within \pm 10 kg. The ballast shall be located and secured to the vehicle so that it does not alter the structural characteristics of the parts of the vehicle expected to deform during the test.

At the time of impact, the vehicle shall be at its normal ride height and attitude defined by the manufacturer.

The instrumentation and cameras required for testing should not change the mass distribution between the axles by more than 20 kg.

6.2 Condition of test vehicle

6.2.1 General

The test vehicle doors shall be fully closed and latched, but not locked. Window(s) adjacent to the test dummy shall be closed, with appropriate glazing in place without protective or optical film applied on the glazing.

If the test vehicle has seats equipped with adjustable side bolsters or wings, these shall be adjusted to their nominal position, as defined by the manufacturer. If the nominal position does not allow the test device to be positioned, the adjustable seat side bolsters or wings shall be adjusted to fit the test device.

The steering wheel, if adjustable, shall be placed in the normal position indicated by the manufacturer or, if not possible, midway between the limits of its range(s) of adjustment.

Adjustable steering controls shall be adjusted so that the steering wheel hub is located in the manufacturer's nominal design riding position.

The parking brake shall be disengaged. The transmission shall be in neutral.

All tyres shall be inflated to the manufacturer's specifications.

If the test vehicle has a convertible top, the convertible structure shall be in the "up" position for the test.

The test dummy temperature should be within a temperature range, and at a relative humidity, specified by the dummy's manufacturer.

6.2.2 Seat position

Separately adjustable seats in a vertical direction shall be at the position defined by the manufacturer. If, on the same model, adjustable and fixed seats exist, the vertical position of the fixed seat shall be used.

The seats shall be positioned, as desired, by the test requestor.

6.2.2.1 Foremost-seat position

For adjustable seats, the adjustment position shall be as far forward on the seat track as possible.

6.2.2.2 Mid-seat position

For adjustable seats, the adjustment position shall be midway between the foremost and rearmost position, but If an adjustment position at this point does not exist, the adjustment position closest to the rear of the midpoint shall be used.

6.2.2.3 Rearmost-seat position

For adjustable seats, the adjustment position shall be as far rearward on the seat track as possible.

6.2.2.4 Position of the front seat-backs TANDARD PREVIEW

If adjustable, the seat-backs shall be adjusted so that the resulting inclination of the torso of the dummy is as close as possible to that recommended by the manufacturer for normal use or, in the absence of any particular recommendation by the manufacturer, to <u>25° towards the</u> rear from the vertical.

https://standards.iteh.ai/catalog/standards/sist/0efc5e7f-9c3d-41b0-8adb-

9057f966550c/iso-15829-2004

7 Test devices

The dummies that may be used for SAB investigations are EUROSID 1 and 2, BIOSID, SID-IIs.

8 Instrumentation

All measurements should be recorded and filtered according to ISO 6487, ISO 8721 and SAE J211-1 and SAE J211-2. These measurements should be continuous functions of time, so that other quantities referred to in the references may be derived.

The airbag deployment and dummy interactions should be monitored by high-speed cameras (or equivalent video or digital equipment) operating at a minimum speed of a thousand frames per second.

9 Installation of test dummy

9.1 General

Locate the H-point in the vehicle in accordance with ISO 6549. If this can only be done in the rearmost position of the seat, locate the H-point relative to the seat prior to moving the seat forward into the test position. Using the package drawing, correlate the H-point to the seating position used for the test. Locate the lateral centreline of the seating position.

Mark the test dummy for its midsagittal plane, the centre-of-gravity of the head and the H-point. Mark a hip pivot point, or another mark that approximately coincides with the ISO 6549 manikin H-point. Use instrumentation to measure the test dummy's pelvic angle.

The dummy's upper torso or head may be lightly taped to the seat back so that it does not move relative to the seat during final instrumentation checks, etc. The tape may be left in place for the test, provided that it will break when subjected to a load \leq 50 N.

If the positioned dummy remains in the seat longer than 3 h before a test, check the head centre-of-gravity vertical position. If the head centre-of-gravity has changed by more than 5 mm, reposition the dummy.

9.2 Dummy segment positioning

9.2.1 Torso

9.2.1.1 Test dummy in driver's position

9.2.1.1.1 Bench seat

The upper torso of the test dummy shall rest against the seat back. The dummy's midsagittal plane shall be vertical and parallel to the vehicle's longitudinal centreline and pass through the centre of the steering wheel. If the seat has a contour, the dummy shall be centred in the contour as determined using the ISO 6549 manikin procedure.

Bucket or contoured seat 9.2.1.1.2

The upper torso of the test dummy shall rest against the seat back. The midsagittal plane of the test dummy shall be vertical and coincide with the longitudinal centreline of the bucket or contoured seat.

Test dummy in front outboard passenger position 9.2.1.2

9.2.1.2.1 Bench seat

The upper torso of the test dummy shall rest against the seat back. The midsagittal plane of the test dummy shall be vertical and parallel to the vehicle's longitudinal centreline and the same distance from the vehicle's longitudinal centreline as would be the midsagittal plane of a test dummy in the driver's position according to 9.2.1.1. If the seat has a contour, the test dummy shall be centred in the contour as determined using the ISO 6549 manikin procedure.

9.2.1.2.2 Bucket or contoured seat

The upper torso of the test dummy shall rest against the seat back. The midsagittal plane of the test dummy shall be vertical and parallel to the vehicle's longitudinal centreline and coincide with the longitudinal centreline of the bucket or contoured seat.

9.2.2 H-point of dummy

The H-point of the test dummy shall be within 15 mm in the vertical dimension, and 15 mm in the horizontal dimension, of the H-point determined using the equipment and procedure specified in ISO 6549, except that the length of the leg and thigh segments of the H-point machine shall be adjusted to 415 mm and 400 mm, respectively.

9.2.3 Pelvic angle

Set the pelvic angle at 30,5° $^{+2,5°}_{0}$ for the EUROSID-1 and BIOSID test dummies and 20° $^{+2,5°}_{0}$ for the SID-IIs.